Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 67 > Synthesis and Antifungal Evaluation of Quaternary...
< Back to Volume

Synthesis and Antifungal Evaluation of Quaternary Ammonium Salts Derivatives of Dialkylaminoethyl Methacrylate Bearing 1,3,4-Oxadiazoles Moieties

Full Text PDF

Abstract:

Starting from lauric acid two novel quaternary ammonium salts containing 1,3,4-Oxadiazoles nucleus derivative from N,N-Diethylaminoethyl Methacrylate (DEAEMA) and N,N-Dimethylaminoethyl Methacrylate (DMAEMA) was successfully synthesized and characterized by IR, 1H and 13C NMR, All the synthesized compounds were evaluated for their preliminary in vitro antifungal activity against three fungal strains such as Fusarium oxysporum, Fusarium commune and Fusarium rodelens. The synthesized compounds showed promising antifungal potential against the phytopathogenic test fungi.

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 67)
Pages:
36-41
Citation:
Z. Ould Kada et al., "Synthesis and Antifungal Evaluation of Quaternary Ammonium Salts Derivatives of Dialkylaminoethyl Methacrylate Bearing 1,3,4-Oxadiazoles Moieties", International Letters of Chemistry, Physics and Astronomy, Vol. 67, pp. 36-41, 2016
Online since:
Jun 2016
Export:
Distribution:
References:

[1] P. Benjaphorn, K. Chutima, M. Skorn, Antifungal Potential of Extracellular Metabolites Produced by Streptomyces hygroscopicus against Phytopathogenic Fungi, Int J Biol Sci. 4: 5 (2008) 330–337.

DOI: https://doi.org/10.7150/ijbs.4.330

[2] D. Ralph, A.L.V. K Jan, A.P. Zacharias, E.H.K. Kim, D.P. Antonio, D. S. Pietro, J.R. Jason, D. Marty, K. Regine, E. Jeff, D.F. Gary, The Top 10 fungal pathogens in molecular plant pathology, Mol Plant Pathol. 13: 4 (2012) 414-430.

DOI: https://doi.org/10.1111/j.1364-3703.2011.00783.x

[3] D.N. Enyiukwu, A.N. Awurum, J.A. Nwaneri, Efficacy of plant-derived pesticides in the control of myco-induced postharvest rots of tubers and agricultural products: A review, Net Journal of Agricultural Science. 2: 1 (2014) 30-46.

[4] M. Wang, Q. Zhang, Q. Ren, X. Kong, L. Wang, H. Wang, J. Xu, Y. Guo, Isolation and characterization of sesquiterpenes from Celastrus orbiculatus and their antifungal activities against phytopathogenic fungi, J Agric Food Chem. 62: 45 (2014).

DOI: https://doi.org/10.1021/jf503735t

[5] P. Tünde, J.H. Imre, P. István, Secondary metabolites in fungus-plant interactions, Frontiers in Plant Science. 6 (2015) 573.

[6] L. Mouhssen, The Success of Natural Products in Drug Discovery, Pharmacology & Pharmacy. 4 (2013) 17-31.

[7] B. Ghazala, B. Naila, S. Mustafa, Pak, Fatty acids and biological activities of crude extracts of freshwater algae from sindh, Pak J Bot. 42: 2 (2010) 1201-1212.

[8] I. Hacıbekiroğlu, K.Y. Pelin, H. Nesrin, K. Ersin, V. Teysel, K Ufuk, In vitro biological activities and fatty acid profiles of Pistacia terebinthus fruits and Pistacia khinjuk seeds, Natural Product Research: Formerly Natural Product Letters. 29: 5 (2015).

DOI: https://doi.org/10.1080/14786419.2014.947492

[9] S. Eraricar, I.M. Ida, A.P. Qadly, Spectrum Activity and Lauric Acid Release Behaviour of Antimicrobial Starch-Based Film, Procedia Chemistry. 9 (2014) 11–22.

DOI: https://doi.org/10.1016/j.proche.2014.05.003

[10] D.R. Walters, R.L. Walker, K.C. Walker, Lauric Acid Exhibits Antifungal Activity Against Plant Pathogenic Fungi, J Phytopathology. 151 (2003) 228–230.

DOI: https://doi.org/10.1046/j.1439-0434.2003.00713.x

[11] S. Kavitha, S. Gnanavel, K. Kannan, Biological aspects of 1, 3, 4-oxadiazole derivatives, Asian J Pharm Clin Res. 7: 4 (2014) 11-20.

[12] R.B. Mudasir, H.M. Rayees, R. Abdul, Synthesis, char acterization and anti-bacterial activity of 5-(alkenyl)-2-amino- and 2-(alkenyl)-5-phenyl-1, 3, 4-oxadiazoles, J Chem Sci. 122: 2 (2010) 177–182.

DOI: https://doi.org/10.1007/s12039-010-0019-6

[13] W.A. El-Sayed, F. A. El-Essawy, M. A. Omar, S.N. Barsis, M. A. Mohamed, A. -H. A-R. Adel, Anti-HIV Activity of New Substituted 1, 3, 4-Oxadiazole Derivatives and their Acyclic Nucleoside Analogues, Z. Naturforsch. 64 (2009) 773–778.

DOI: https://doi.org/10.1515/znc-2009-11-1203

[14] X. Weiming, H. Jiang, H. Ming, H. Feifei, C. Xuehai, P. Zhaoxi, W. Jian, T Maoguo, Synthesis and Antifungal Activity of Novel Sulfone Derivatives Containing 1, 3, 4-Oxadiazole Moieties, Molecules. 16 (2011) 9129-9141.

DOI: https://doi.org/10.3390/molecules16119129

[15] A.N.Y. Megally, M.M. Kamel, Synthesis and anticancer evaluation of 1, 3, 4-oxadiazoles, 1, 3, 4-thiadiazoles, 1, 2, 4-triazoles and Mannich bases, Chem Pharm Bull. 63: 5 (2015) 369-76.

DOI: https://doi.org/10.1248/cpb.c15-00059

[16] Salahuddin, M. Avijit, S. Mohammad, Synthesis, Characterization, and In Vitro Anticancer Evaluation of Novel 2, 5-Disubstituted 1, 3, 4-Oxadiazole Analogue, BioMed Research International. 2044 (2014).

DOI: https://doi.org/10.1155/2014/491492

[17] K. Zhang, P. Wang, L.N. Xuan, X.Y. Fu, F. Jing, S. Li, Y.M. Liu, B.Q. Chen, Synthesis and antitumor activities of novel hybrid molecules containing 1, 3, 4-oxadiazole and 1, 3, 4-thiadiazole bearing Schiff base moiety, Bioorg Med Chem. Lett. 24: 22 (2014).

DOI: https://doi.org/10.1016/j.bmcl.2014.09.086

[18] P.D. Ullas, B.C. Revanasiddappa, E.V.S. Subrahmanyam, Analgesic and anti inflammatory activity of 1, 3, 4- oxadiazoles derivaties, IJPCBS. 2: 3 (2012) 202-205.

[19] C. Corina, V. Şunel, H. Mihaela, J. Desbrières, M. Popa , L. Cătălina, Enhanced antipyretic activity of new 2, 5-substituted 1, 3, 4-oxadiazoles encapsulated in alginate/gelatin particulated systems, Cellulose Chem Technol. 46 (1-2) (2012) 19-25.

[20] S. Poonam, K.J. Pankaj, Oxadiazoles: A novel class of anti-convulsant agents, Der Chemica Sinica. 1: 3 (2010) 118-123.

[21] V.S. Ramya, M.H. Kallappa, S.K. Rangappa, H.H. Mallinath, Derivatives of benzimidazole pharmacophore: Synthesis, anticonvulsant, antidiabetic and DNA cleavage studies, European Journal of Medicinal Chemistry. 45 (2010) 1753–1759.

DOI: https://doi.org/10.1016/j.ejmech.2010.01.007

[22] D.S. Musmade, S.R. Pattan, S.Y. Manjunath, Oxadiazole a nucleus with versatile biological behavior, International Journal of Pharmaceutical Chemistry. 5: 1 (2015) 11-20.

[23] S.O. Cledualdo, F.L. Bruno, M. B-F. José, G.F.L. Jorge, FA-F. Petrônio, Synthetic Approaches and Pharmacological Activity of 1, 3, 4-Oxadiazoles: A Review of the Literature from 2000–2012, Molecules. 17: 9 (2012) 10192-10231.

DOI: https://doi.org/10.3390/molecules170910192

[24] S. Rakesh, C. Anuja, Various approaches for synthesis of 1, 3, 4-oxadiazole derivatives and their pharmacological activity, World Journal of Pharmacy and Pharmaceutical Sciences. 3: 10 (2014) 1474-1505.

[25] Z. Chang, C. Fang, Z. Guang-ming, J. Min, Y. Zhong-zhu, Y. Zhi-gang, Z. Meng-ying, S. Liu-qing, Quaternary ammonium compounds (QACs): A review on occurrence, fate and toxicity in the environment, Science of the Total Environment. 518-519 (2015).

DOI: https://doi.org/10.1016/j.scitotenv.2015.03.007

[26] S. Buffet-Bataillon, B. Branger, M. Cormier, M. Bonnaure-Mallet, A. Jolivet-Gougeon, Effect of higher minimum inhibitory concentrations of quaternary ammonium compounds in clinical E. coli isolates on antibiotic susceptibilities and clinical outcomes, Journal of Hospital Infection., 79 (2011).

DOI: https://doi.org/10.1016/j.jhin.2011.06.008

[27] T. Ulas, G. P. Spyros, Quaternary ammonium disinfectants: Microbial adaptation, Degradation and ecology, Current Opinion in Biotechnology. 33 (2015) 296–304.

DOI: https://doi.org/10.1016/j.copbio.2015.03.018

[28] C.J.I. Denyer, W.H. Geoff, P. Stephen, Action of Disinfectant Quaternary Ammonium Compounds against Staphylococcus aureus, Antimicrob Agents Chemother. 51: 1 (2007) 296–306.

DOI: https://doi.org/10.1128/aac.00375-06

[29] W.G. Jian, Z. Xing, Z. Hua, J.F. Li, D.C. Ying, Synthesis of novel quaternary ammonium surfactants containing adamantine, Chinese Chemical Letters. 23 (2012) 653–656.

DOI: https://doi.org/10.1016/j.cclet.2012.04.002

[30] T. Evren, T. Cihat ¸ K. S. çio g, Nami, Y. Tsuyoshi, Termite resistance of solid wood and plywood treated with quaternary ammonia compounds and common fire retardants, International Biodeterioration & Biodegradation. 65 (2011) 565-568.

DOI: https://doi.org/10.1016/j.ibiod.2010.10.014

[31] A. Vildan, T. Hüseyin, E. Erçin, Synthesis and antimicrobial activities of some pyridinium salts, J Fac Pharm, Ankara. 35: 3 (2006) 177-188.

[32] T. Maximilian, P. Gabriele, O. Knut, H. Ulrike, Quaternary Ammonium Salts and Their Antimicrobial Potential: Targets or Nonspecific Interactions?, Chem Med Chem. 7 (2012) 22–31.

DOI: https://doi.org/10.1002/cmdc.201100404

[33] M. C-R Ana, D. M. C Letícia, Cationic Antimicrobial Polymers and Their Assemblies, Int. J. Mol. Sci. 14 (2013) 9906-9946.

[34] S. Mandeep, G. Anita, S. Anjali, K. Vineet, Synthesis of quarternary ammonium salts with dithiocarbamate moiety and their antifungal activities against Helminthosporium oryzae, J Chem Sci. 125: 3 (2013) 567–573.

DOI: https://doi.org/10.1007/s12039-013-0394-x

[35] N. Hamini-Kadar, F. Hamdane, R. Boutoutaou, M. Kihal, J. E. Henni, Antifungal activity of clove (syzygium aromaticum) essential oil against phytopathogenic fungi of tomato (solanum lycopersicum) in Algeria, Journal of Experimental Biology and Agricultural Sciences. 2: 5 (2014).

[36] B. S Furniss, A. J Hannford, P.W. G Smith, A. R Tatchell, Vogel's Text Book of Practical Organic Chemistry, Pearson Education India, (1989).

Show More Hide