Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 67 > Effect of Calcination Temperature on the Physical...
< Back to Volume

Effect of Calcination Temperature on the Physical Properties of Layered LiNiO2 Prepared by Solid-State Reaction Method

Full Text PDF

Abstract:

A layered structure compound LiNiO2 material is synthesized by the solid-state reaction method under air atmosphere in the temperature range from 750 °C to 850 °C using Li2CO3 and NiO as the starting materials for 20 hours. The physical properties of the synthesized powder are investigated by X-ray diffraction (XRD), Field effect scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopic (FT-IR) techniques. The results of XRD patterns possessed the α-NaFeO2 structure of the rhombohedral system (space group, ) with no evidence of any impurities. The morphological features of the powders are characterized by field effect scanning electron microscopy (FESEM). The particles of LiNiO2 powder are generally in the form of a smoothly edged polyhedron and their average grain size is approximately 2 - 3 μm. The FT-IR spectroscopic data of LiNiO2 reveal the structure of the oxide lattice constituted by LiO6 and NiO6 octahedra. In general, from this study, we conclude that the LiNiO2 synthesized by solid state reaction method at different temperatures to increase in the sintering temperature. The lattice constant is increased, while the sintering temperature is increased. The maximum and minimum intensity ratios of XRD spectra shows that the optimum calcination condition is 800°C for 20 h. At 750-850°C, the particle size distribution is in the range of 2 - 3 μm.

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 67)
Pages:
31-35
Citation:
N. Murali et al., "Effect of Calcination Temperature on the Physical Properties of Layered LiNiO2 Prepared by Solid-State Reaction Method", International Letters of Chemistry, Physics and Astronomy, Vol. 67, pp. 31-35, 2016
Online since:
June 2016
Export:
Distribution:
References:

[1] K. Ozawa, Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system, Solid State Ionics, 69 (1994) 212-221.

DOI: https://doi.org/10.1016/0167-2738(94)90411-1

[2] Z. S Peng, C. R Wan, C. Y Jiang, Synthesis by sol-gel process and characterization of LiCoO2 cathode materials, J. Power Sources 72 (1998) 215-220.

DOI: https://doi.org/10.1016/s0378-7753(97)02689-x

[3] J. R. Dahn, U. von Sacken, M. W. Juzkow,  H. Al‐Janaby, Rechargeable LiNiO2 / Carbon Cells, J. Electrochem. Soc.  138 (1991) 2207-2211.

DOI: https://doi.org/10.1002/chin.199141010

[4] M.Y. Song, R. Lee, Synthesis by sol–gel method and electrochemical properties of LiNiO2 cathode material for lithium secondary battery, J. Power Sources, 111 (2002) 97–103.

DOI: https://doi.org/10.1016/s0378-7753(02)00263-x

[5] A.R. Armstrong, P.G. Bruce, Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries, Nature,  381 (1996) 499 - 500.

DOI: https://doi.org/10.1038/381499a0

[6] K.S. Tan, M.V. Reddy, G.V.S. Rao, B.V.R. Chowdari, High-performance LiCoO2 by molten salt (LiNO3: LiCl) synthesis for Li-ion batteries, J. Power Sources 147 (2005) 241-248.

DOI: https://doi.org/10.1016/j.jpowsour.2005.01.019

[7] Tze Qing Tan, Mohd Sobri Idris, Rozana Aina Maulat Osman, M.V. Reddy, B.V.R. Chowdari, Structure and electrochemical behaviour of LiNi0. 4Mn0. 4Co0. 2O2 as cathode material for lithium ion batteries, Solid State Ionics 278 (2015) 43–48.

DOI: https://doi.org/10.1016/j.ssi.2015.05.016

[8] G.X. Wang, P. Yao, S. Zhong, D.H. Bradhurst, S.X. Dou  H.K. Liu, Electrochemical study on orthorhombic LiMnO2 as cathode in rechargeable lithium batteries, J. Appl. Electrochem., 29 (1999) 1423-1426.

[9] Paulos Taddesse Shibeshi, V. Veeraiah, Structural, electrical and electrochemical characterization of LiLa0. 01Cr0. 13Mn1. 86O4 cathode material for lithium-ion battery, J. Phys. Chem. Solids. 75 (2014) 1075–1079.

DOI: https://doi.org/10.1016/j.jpcs.2013.10.011

[10] M.Y. Song, D.S. Lee, Electrochemical Properties of Cathode Materials LiNiO2 and LiNi1-yMyO2 (M = Zn2+, Al3+ and Ti4+). Trends Appl Sci Res. 1 (2006) 15-24.

DOI: https://doi.org/10.3923/tasr.2006.15.24

[11] Y. Takahashi, S. Tode, A. Kinoshita, H. Fujimoto, I. Nakane, S. Fujitani, Development of Lithium-Ion Batteries with a LiCoO2 Cathode Toward High Capacity by Elevating Charging Potential, J. Electrochem. Soc.  155 (2008) A537-A541.

DOI: https://doi.org/10.1149/1.2916685

[12] T. Titipun, T. Somchai, Synthesis of Li1−xNi1+xO2 using malonic acid as a chelating agent, Ceram int. 31 (2005) 241–247.

DOI: https://doi.org/10.1016/j.ceramint.2004.05.007

[13] N. Murali, K. Vijaya Babu, K. Ephraim Babu, V. Veeraiah, Structural and Morphological Characterization of Mg Doped LiNiO2 Cathode Materials for Lithium-Ion Batteries, Chem. Sci. Trans. 2015, 4(4), 1031-1036.

DOI: https://doi.org/10.7598/cst2015.1016

[14] R. Moshtev, P. Zlatilova, S. Vasilev, I. Bakalova, A. Kozawa, Synthesis, XRD characterization and electrochemical performance of overlithiated LiNiO2, J. Power Sources,  81 (1999) 434-441.

DOI: https://doi.org/10.1016/s0378-7753(99)00247-5

[15] Sung Nam Kwon, Jihong Song, Daniel R. Mumm, Effects of cathode fabrication conditions and cycling on the electrochemical performance of LiNiO2 synthesized by combustion and calcination, Ceram int. 37 (2011) 1543-1548.

DOI: https://doi.org/10.1016/j.ceramint.2011.01.028

[16] P. Kalyani, N. Kalaiselvi, Various aspects of LiNiO2 chemistry: A review, Sci. Tech. Adv. Mater. 6 (2005) 689-703.

[17] C.H. Han, J.H. Kim, S.H. Paeng, D.J. Kwak, Y.M. Sung, Electrochemical characteristics of LiNiO2 films prepared for charge storable electrode application, Thin Solid Films 517 (2009) 4215-4217.

DOI: https://doi.org/10.1016/j.tsf.2009.02.046

[18] P.N. Jung, K. T. Jung, T.H. Kwon, G.B. Cho, S.C. Huh, B.K. Choi, K.W. Kim, T.H. Nam, Microstructure and electrochemical properties of magnetron-sputtered LiCoO2/LiNiO2 multi-layer thin film electrode, Mater. Res. Bull,  48 (2013) 4993-4996.

DOI: https://doi.org/10.1016/j.materresbull.2013.04.045

[19] R. Sathiyamoorthi, P. Shakkthivel, S. Ramalakshmi, Yong-Gun Shul, Influence of Mg doping on the performance of LiNiO2 matrix ceramic nanoparticles in high-voltage lithium-ion cells, J. Power Sources, 171 (2007) 922-927.

DOI: https://doi.org/10.1016/j.jpowsour.2007.06.023

[20] S. Tao, Q. Wu, Z. Zhan, G. Meng, Preparation of LiMO2 (M=Co, Ni) cathode materials for intermediate temperature fuel cells by sol-gel processes, Solid State Ionics,  124 (1999) 53-59.

DOI: https://doi.org/10.1016/s0167-2738(99)00137-x
Show More Hide
Cited By:
This article has no citations.