Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 67 > Synthesis of Polyaniline in the Presence of...
< Back to Volume

Synthesis of Polyaniline in the Presence of Physiological Active Compounds

Full Text PDF

Abstract:

Synthesis of polyaniline (PANI) in the presence of physiological active materials is reported. Infrared absorption, electron spin resonance, and UV-Vis optical absorption spectroscopy measurements for the resultants were carried out. Scanning electron microscopy (SEM) observations revealed the surface structures of the polymer.

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 67)
Pages:
1-8
Citation:
K. Nakajima et al., "Synthesis of Polyaniline in the Presence of Physiological Active Compounds", International Letters of Chemistry, Physics and Astronomy, Vol. 67, pp. 1-8, 2016
Online since:
June 2016
Export:
Distribution:
References:

[1] H. Letheby, XXIX. —On the production of a blue substance by the electrolysis of sulphate of aniline, J. Chem. Soc. 15 (1862) 161–163.

DOI: https://doi.org/10.1039/js8621500161

[2] G. Green, E. Woodhead, CCXLIII. —Aniline-black and allied compounds. Part I, J, Chem, Soc, Trans. 97 (1910) 2388–2403.

DOI: https://doi.org/10.1039/ct9109702388

[3] A.G. MacDiarmid, Synthetic Metals,: A novel role for organic polymers (Nobel Lecture), Angew Chem Int Ed. 40 (2001) 2581–2590.

DOI: https://doi.org/10.1002/1521-3773(20010716)40:14<2581::aid-anie2581>3.0.co;2-2

[4] E.M. Genies, A. Boyle, M. Lapkowski, C. Tsintavis, Polyaniline: A historical survey, Synth. Met. 36 (1990) 139–182.

DOI: https://doi.org/10.1016/0379-6779(90)90050-u

[5] N.V. Blinova, J. Stejskal, M. Trchova, J. Prokes, M. Omastova, Polyaniline and polypyrrole: A comparative study of the preparation, Euro. Polym. J. 43 (2007) 2331–2341.

DOI: https://doi.org/10.1016/j.eurpolymj.2007.03.045

[6] C. Laslau, Z. Zujovic, J. Travas-Stejdic, Theories of polyaniline nanostructure self-assembly: Towards an expanded, comprehensive Multi-Layer Theory (MLT), Prog. Polym. Sci. 35 (2010) 1403–1419.

DOI: https://doi.org/10.1016/j.progpolymsci.2010.08.002

[7] E.N. Konyushenko, J. Stejskal, I. Sedenkova, M. Trchova, I. Sapurina, M. Cieslar, J. Prokes, Polyaniline nanotubes: conditions of formation, Polym. Int. 55 (2006) 31–39.

DOI: https://doi.org/10.1002/pi.1899

[8] Z. Ding, T. Sanchez, A. Labouriau, S. Lyer, T. Larson, R. Currier, Y. Zhao, D. Yang, Characterization of reaction intermediate aggregates in aniline oxidative polymerization at low proton concentration, J. Phys. Chem. B. 114 (2010) 10337–10346.

DOI: https://doi.org/10.1021/jp102623z

[9] E.N. Konyushenko, M. Trchova, J. Stejskal, I. Sapurina, The role of acidity profile in the nanotubular growth of polyaniline, Chem. Pap. 64 (2010) 56–64.

DOI: https://doi.org/10.2478/s11696-009-0101-z

[10] N. Chiou, A. J. Epstein, A simple approach to control the growth of polyaniline nanofibers, Synth Met. 153 (2005) 69–72.

[11] G. Ciric-Marjanovic, L. Dragicevic, M. Milojevic, M. Mojovic, S. Mentus, B. Dojcinovic, B. Marjanovic, J. Stejskal, Synthesis and characterization of self-assembled polyaniline nanotubes/silica nanocomposites, J. Phys. Chem. B. 113 (2009).

[12] P. Wang, E.C. Venancio, D.M. Sarno, A.G. MacDiarmid, Simplifying the reaction system for the preparation of polyaniline nanofibers: Re-examination of template-free oxidative chemical polymerization of aniline in conventional low-pH acidic aqueous media, React. Func. Polym. 69 (2009).

DOI: https://doi.org/10.1016/j.reactfunctpolym.2008.11.002

[13] G. Li, Z. Wang, G. Xie, H. Peng, Z. Zhang, Synthesis of interconnected polyaniline nanofibers in catanionic micelles, J. Disp. Sci. Tech. 27 (2006) 991–995.

[14] L. Zhang, M. Wan, Chiral polyaniline nanotubes synthesized via a self-assembly process, Thin Solid Films. 477 (2005) 24–31.

DOI: https://doi.org/10.1016/j.tsf.2004.08.106

[15] X. Wang, J. Liu, X. Huang, L. Men, M. Guo, D. Sun, Controlled synthesis of linear polyaniline tubes and dendritic polyaniline fibers with stearic acid, Polym. Bull. 60 (2008) 1–6.

DOI: https://doi.org/10.1007/s00289-007-0828-z

[16] D. Chao, J. Chen, X. Lu, L. Chen, W. Zhang, Y. Wei, SEM study of the morphology of high molecular weight polyaniline, Synth Met. 150 (2005) 47–51.

DOI: https://doi.org/10.1016/j.synthmet.2005.01.010

[17] C. Zhou, J. Han, R. Guo, Controllable synthesis of polyaniline multidimensional architectures: from plate-like structures to flower-like superstructures, Macromolecules 41 (2008) 6473–6479.

DOI: https://doi.org/10.1021/ma800500u

[18] H. Goto, A. Yokoo, Polyaniline nanospheres synthesized in the presence of polyvinyl alcohol, followed by preparation of carbon nanobeads structures, J. Disp. Sci. Tech. 34 (2013) 406–410.

DOI: https://doi.org/10.1080/01932691.2012.662435

[19] W. Li, P.A. McCarthy, D. Liu, J. Huang, S. -C. Yang, H. -L. Wang, Toward understanding and optimizing the template-guided synthesis of chiral polyaniline nanocomposites, Macromolecules 35 (2002) 9975–9982.

DOI: https://doi.org/10.1021/ma020915t

[20] P.A. McCarthy, J. Huang, S. -C. Yang, H. -L. Wang, Synthesis and characterization of water-soluble chiral conducting polymer nanocomposites, Langmuir 18 (2002) 259–263.

DOI: https://doi.org/10.1021/la0111093

[21] D. Müller, J.S. Mandelli, J.A. Marins, B.G. Soares, L.M. Porto, C.R. Rambo, Electrically conducting nanocomposites: preparation and properties of polyaniline (PAni)-coated bacterial cellulose nanofibers (BC), Cellulose 19 (2012) 1645–1654.

DOI: https://doi.org/10.1007/s10570-012-9754-9

[22] G. Yuan, N. Kuramoto, Synthesis of helical polyanilines using chondroitin sulfate as a molecular template, Macromol. Chem. Phys. 205 (2004) 1744–1751.

DOI: https://doi.org/10.1002/macp.200400184

[23] H. Goto, Synthesis of polyaniline in natural volcanic water, J. Hot Spring Sci. 60 (2010) 134–144.

[24] E.I. Gill, A. Arshak, K. Arshak, O. Korostynska, Investigation of thick-film polyaniline-based conductimetric pH sensors for medical applications, IEEE Sens. J. 9 (2009) 555–562.

DOI: https://doi.org/10.1109/jsen.2009.2016608

[25] Y. Tsuchiya, T. Komori, M. Hirano, T. Shiraki, A. Kakugo, T. Ide, J. Gong, S. Yamada, T. Yanagida, S. Shinkai, A Polysaccharide-Based Container Transportation System Powered by Molecular Motors, Angew. Chem. 122 (2010) 736–739.

DOI: https://doi.org/10.1002/ange.200904909

[26] C. Zhou, D. Zhang, D. Tong, L. Wu, W. Yu, S. Ismadji, Paper-like composites of cellulose acetate–organo-montmorillonite for removal of hazardous anionic dye in water, Chem. Eng. J. 209 (2012) 223–234.

DOI: https://doi.org/10.1016/j.cej.2012.07.107

[27] O. Varela, Oxidative reactions and degradations of sugars and polysaccharides, Adv. Carbohydr. Chem. Biochem. 58 (2003) 307–369.

[28] M. Nagae, Y. Yamaguchi, Three-dimensional structural aspects of protein–polysaccharide interactions, Int. J. Mol. Sci. 15 (2014) 3768–3783.

DOI: https://doi.org/10.3390/ijms15033768

[29] Y. Liu, C. Chipot, X. Shao, W. Cai, Solubilizing carbon nanotubes through noncovalent functionalization. Insight from the reversible wrapping of alginic acid around a single-walled carbon nanotube, J. Phys. Chem. B. 114 (2010) 5783–5789.

DOI: https://doi.org/10.1021/jp9110772

[30] K. Nakajima, K. Kawabata, H. Goto, Water-soluble polyaniline/polysaccharide composites: polymerization and carbonization to yield carbon micro-bubbles, Synth. Met. 194, (2014) 47–51.

DOI: https://doi.org/10.1016/j.synthmet.2014.04.015

[31] A. -S. Lappanen, C. Xu, J. Liu, X. Wang, M. Pesonen, S. Willfor, Anionic polysaccharides as templates for the synthesis of conducting polyaniline and as structural matrix for conducting biocomposites, Macromol. Rapid Commun. 34 (2013) 1056–1061.

DOI: https://doi.org/10.1002/marc.201300275

[32] V.I. Krinichnyi, A.L. Konkin, A.P. Monkman, Electron paramagnetic resonance study of spin centers related to charge transport in metallic polyaniline, Synth. Met. 162 (2012) 1147–1155.

DOI: https://doi.org/10.1016/j.synthmet.2012.04.030

[33] J. Stejskal , I. Sapurina, M. Trchová, Polyaniline nanostructures and the role of aniline oligomers in their formation, Prog. Polym. Sci. 35 (2010) 1420–1481.

DOI: https://doi.org/10.1016/j.progpolymsci.2010.07.006

[34] A. Janošević, G. Ćirić-Marjanović, B. Marjanović, P. Holler, M. Trchová, J. Stejsk, Synthesis and characterization of conducting polyaniline 5-sulfosalicylate nanotubes, Nanotechnology 19 (2008) 135606.

DOI: https://doi.org/10.1088/0957-4484/19/13/135606

[35] M. Trchova, E.N. Konyushenko, J. Stejskal, J. Kovarˇova, G. C´iric´-Marjanovi´c, The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-wall carbon nanotubes, Polym. Degrad. Stab. 94 (2009).

DOI: https://doi.org/10.1016/j.polymdegradstab.2009.03.001

[36] J.J. Langer, S. Golczak, Highly carbonized polyaniline micro- and nanotubes, Polym. Degrad. Stab. 92 (2007) 330–334.

DOI: https://doi.org/10.1016/j.polymdegradstab.2006.07.018

[37] J. Stejskal, I. Sapurina, M. Trchová, E. N. Konyushenko, P. Holler, The genesis of polyaniline nanotubes, Polymer, 47 (2006) 8253–8262.

DOI: https://doi.org/10.1016/j.polymer.2006.10.007
Show More Hide