Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 67 > Synthesis of Polyaniline in the Presence of...
< Back to Volume

Synthesis of Polyaniline in the Presence of Physiological Active Compounds

Full Text PDF


Synthesis of polyaniline (PANI) in the presence of physiological active materials is reported. Infrared absorption, electron spin resonance, and UV-Vis optical absorption spectroscopy measurements for the resultants were carried out. Scanning electron microscopy (SEM) observations revealed the surface structures of the polymer.


International Letters of Chemistry, Physics and Astronomy (Volume 67)
K. Nakajima et al., "Synthesis of Polyaniline in the Presence of Physiological Active Compounds", International Letters of Chemistry, Physics and Astronomy, Vol. 67, pp. 1-8, 2016
Online since:
Jun 2016

[1] H. Letheby, XXIX. —On the production of a blue substance by the electrolysis of sulphate of aniline, J. Chem. Soc. 15 (1862) 161–163.

DOI: 10.1039/js8621500161

[2] G. Green, E. Woodhead, CCXLIII. —Aniline-black and allied compounds. Part I, J, Chem, Soc, Trans. 97 (1910) 2388–2403.

DOI: 10.1039/ct9109702388

[3] A.G. MacDiarmid, Synthetic Metals,: A novel role for organic polymers (Nobel Lecture), Angew Chem Int Ed. 40 (2001) 2581–2590.

DOI: 10.1002/1521-3773(20010716)40:14<2581::aid-anie2581>;2-2

[4] E.M. Genies, A. Boyle, M. Lapkowski, C. Tsintavis, Polyaniline: A historical survey, Synth. Met. 36 (1990) 139–182.

DOI: 10.1016/0379-6779(90)90050-u

[5] N.V. Blinova, J. Stejskal, M. Trchova, J. Prokes, M. Omastova, Polyaniline and polypyrrole: A comparative study of the preparation, Euro. Polym. J. 43 (2007) 2331–2341.

DOI: 10.1016/j.eurpolymj.2007.03.045

[6] C. Laslau, Z. Zujovic, J. Travas-Stejdic, Theories of polyaniline nanostructure self-assembly: Towards an expanded, comprehensive Multi-Layer Theory (MLT), Prog. Polym. Sci. 35 (2010) 1403–1419.

DOI: 10.1016/j.progpolymsci.2010.08.002

[7] E.N. Konyushenko, J. Stejskal, I. Sedenkova, M. Trchova, I. Sapurina, M. Cieslar, J. Prokes, Polyaniline nanotubes: conditions of formation, Polym. Int. 55 (2006) 31–39.

DOI: 10.1002/pi.1899

[8] Z. Ding, T. Sanchez, A. Labouriau, S. Lyer, T. Larson, R. Currier, Y. Zhao, D. Yang, Characterization of reaction intermediate aggregates in aniline oxidative polymerization at low proton concentration, J. Phys. Chem. B. 114 (2010) 10337–10346.

DOI: 10.1021/jp102623z

[9] E.N. Konyushenko, M. Trchova, J. Stejskal, I. Sapurina, The role of acidity profile in the nanotubular growth of polyaniline, Chem. Pap. 64 (2010) 56–64.

DOI: 10.2478/s11696-009-0101-z

[10] N. Chiou, A. J. Epstein, A simple approach to control the growth of polyaniline nanofibers, Synth Met. 153 (2005) 69–72.

[11] G. Ciric-Marjanovic, L. Dragicevic, M. Milojevic, M. Mojovic, S. Mentus, B. Dojcinovic, B. Marjanovic, J. Stejskal, Synthesis and characterization of self-assembled polyaniline nanotubes/silica nanocomposites, J. Phys. Chem. B. 113 (2009).

[12] P. Wang, E.C. Venancio, D.M. Sarno, A.G. MacDiarmid, Simplifying the reaction system for the preparation of polyaniline nanofibers: Re-examination of template-free oxidative chemical polymerization of aniline in conventional low-pH acidic aqueous media, React. Func. Polym. 69 (2009).

DOI: 10.1016/j.reactfunctpolym.2008.11.002

[13] G. Li, Z. Wang, G. Xie, H. Peng, Z. Zhang, Synthesis of interconnected polyaniline nanofibers in catanionic micelles, J. Disp. Sci. Tech. 27 (2006) 991–995.

[14] L. Zhang, M. Wan, Chiral polyaniline nanotubes synthesized via a self-assembly process, Thin Solid Films. 477 (2005) 24–31.

DOI: 10.1016/j.tsf.2004.08.106

[15] X. Wang, J. Liu, X. Huang, L. Men, M. Guo, D. Sun, Controlled synthesis of linear polyaniline tubes and dendritic polyaniline fibers with stearic acid, Polym. Bull. 60 (2008) 1–6.

DOI: 10.1007/s00289-007-0828-z

[16] D. Chao, J. Chen, X. Lu, L. Chen, W. Zhang, Y. Wei, SEM study of the morphology of high molecular weight polyaniline, Synth Met. 150 (2005) 47–51.

DOI: 10.1016/j.synthmet.2005.01.010

[17] C. Zhou, J. Han, R. Guo, Controllable synthesis of polyaniline multidimensional architectures: from plate-like structures to flower-like superstructures, Macromolecules 41 (2008) 6473–6479.

DOI: 10.1021/ma800500u

[18] H. Goto, A. Yokoo, Polyaniline nanospheres synthesized in the presence of polyvinyl alcohol, followed by preparation of carbon nanobeads structures, J. Disp. Sci. Tech. 34 (2013) 406–410.

DOI: 10.1080/01932691.2012.662435

[19] W. Li, P.A. McCarthy, D. Liu, J. Huang, S. -C. Yang, H. -L. Wang, Toward understanding and optimizing the template-guided synthesis of chiral polyaniline nanocomposites, Macromolecules 35 (2002) 9975–9982.

DOI: 10.1021/ma020915t

[20] P.A. McCarthy, J. Huang, S. -C. Yang, H. -L. Wang, Synthesis and characterization of water-soluble chiral conducting polymer nanocomposites, Langmuir 18 (2002) 259–263.

DOI: 10.1021/la0111093

[21] D. Müller, J.S. Mandelli, J.A. Marins, B.G. Soares, L.M. Porto, C.R. Rambo, Electrically conducting nanocomposites: preparation and properties of polyaniline (PAni)-coated bacterial cellulose nanofibers (BC), Cellulose 19 (2012) 1645–1654.

DOI: 10.1007/s10570-012-9754-9

[22] G. Yuan, N. Kuramoto, Synthesis of helical polyanilines using chondroitin sulfate as a molecular template, Macromol. Chem. Phys. 205 (2004) 1744–1751.

DOI: 10.1002/macp.200400184

[23] H. Goto, Synthesis of polyaniline in natural volcanic water, J. Hot Spring Sci. 60 (2010) 134–144.

[24] E.I. Gill, A. Arshak, K. Arshak, O. Korostynska, Investigation of thick-film polyaniline-based conductimetric pH sensors for medical applications, IEEE Sens. J. 9 (2009) 555–562.

DOI: 10.1109/jsen.2009.2016608

[25] Y. Tsuchiya, T. Komori, M. Hirano, T. Shiraki, A. Kakugo, T. Ide, J. Gong, S. Yamada, T. Yanagida, S. Shinkai, A Polysaccharide-Based Container Transportation System Powered by Molecular Motors, Angew. Chem. 122 (2010) 736–739.

DOI: 10.1002/ange.200904909

[26] C. Zhou, D. Zhang, D. Tong, L. Wu, W. Yu, S. Ismadji, Paper-like composites of cellulose acetate–organo-montmorillonite for removal of hazardous anionic dye in water, Chem. Eng. J. 209 (2012) 223–234.

DOI: 10.1016/j.cej.2012.07.107

[27] O. Varela, Oxidative reactions and degradations of sugars and polysaccharides, Adv. Carbohydr. Chem. Biochem. 58 (2003) 307–369.

[28] M. Nagae, Y. Yamaguchi, Three-dimensional structural aspects of protein–polysaccharide interactions, Int. J. Mol. Sci. 15 (2014) 3768–3783.

DOI: 10.3390/ijms15033768

[29] Y. Liu, C. Chipot, X. Shao, W. Cai, Solubilizing carbon nanotubes through noncovalent functionalization. Insight from the reversible wrapping of alginic acid around a single-walled carbon nanotube, J. Phys. Chem. B. 114 (2010) 5783–5789.

DOI: 10.1021/jp9110772

[30] K. Nakajima, K. Kawabata, H. Goto, Water-soluble polyaniline/polysaccharide composites: polymerization and carbonization to yield carbon micro-bubbles, Synth. Met. 194, (2014) 47–51.

DOI: 10.1016/j.synthmet.2014.04.015

[31] A. -S. Lappanen, C. Xu, J. Liu, X. Wang, M. Pesonen, S. Willfor, Anionic polysaccharides as templates for the synthesis of conducting polyaniline and as structural matrix for conducting biocomposites, Macromol. Rapid Commun. 34 (2013) 1056–1061.

DOI: 10.1002/marc.201300275

[32] V.I. Krinichnyi, A.L. Konkin, A.P. Monkman, Electron paramagnetic resonance study of spin centers related to charge transport in metallic polyaniline, Synth. Met. 162 (2012) 1147–1155.

DOI: 10.1016/j.synthmet.2012.04.030

[33] J. Stejskal , I. Sapurina, M. Trchová, Polyaniline nanostructures and the role of aniline oligomers in their formation, Prog. Polym. Sci. 35 (2010) 1420–1481.

DOI: 10.1016/j.progpolymsci.2010.07.006

[34] A. Janošević, G. Ćirić-Marjanović, B. Marjanović, P. Holler, M. Trchová, J. Stejsk, Synthesis and characterization of conducting polyaniline 5-sulfosalicylate nanotubes, Nanotechnology 19 (2008) 135606.

DOI: 10.1088/0957-4484/19/13/135606

[35] M. Trchova, E.N. Konyushenko, J. Stejskal, J. Kovarˇova, G. C´iric´-Marjanovi´c, The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-wall carbon nanotubes, Polym. Degrad. Stab. 94 (2009).

DOI: 10.1016/j.polymdegradstab.2009.03.001

[36] J.J. Langer, S. Golczak, Highly carbonized polyaniline micro- and nanotubes, Polym. Degrad. Stab. 92 (2007) 330–334.

DOI: 10.1016/j.polymdegradstab.2006.07.018

[37] J. Stejskal, I. Sapurina, M. Trchová, E. N. Konyushenko, P. Holler, The genesis of polyaniline nanotubes, Polymer, 47 (2006) 8253–8262.

DOI: 10.1016/j.polymer.2006.10.007
Show More Hide