This study aims to present a numerical investigation of unsteady two-dimensional natural convection of an electrically conducting fluid in a square medium under externally imposed magnetic field. A temperature gradient is applied between the two opposing side walls parallel to y-direction, while the floor and ceiling parallel to x-direction are kept adiabatic. The coupled momentum and energy equations associated with the Lorentz ‘decelerating’ force as well as the buoyancy force terms are solved using the single relaxation lattice Boltzmann (LB) approach. The flow is characterized by the Rayleigh number *Ra* (10^{3}-10^{6}), the Prandtl number *Pr* (0.01-10), the Hartman number *Ha* (0-100) determined by the strength of the imposed magnetic field and its tilt angle from x-axis ranging from 0° to 90°. The changes in the buoyant flow patterns and temperature contours due to the effects of varying the controlling parameters and associated heat transfer are examined. It was found that the developed thermal LB model gives excellent results by comparison with former experimental and numerical findings. Starting from the values 10^{5} of the Rayleigh number *Ra* and *Ha*=0, the flow is unsteady multicellular for low Prandtl number typical of liquid metal. Increasing gradually Pr, the flow undergoes transition to steady bicellular. The transition occurs at a threshold value between *Pr*=0.01 and 0.1. Increasing more the Prandtl number, the flow structure is distorted due to the viscous forces which outweigh the buoyancy forces and a thermal stratification is clearly established. For high Hartman number, the damping effects suppress the unsteady behaviour and results in steady state with extended unicellular pattern in the direction of Lorentz force and the heat transfer rate is reduced considerably.

Periodical:

International Letters of Chemistry, Physics and Astronomy (Volume 66)

Pages:

79-95

DOI:

10.18052/www.scipress.com/ILCPA.66.79

Citation:

R. Djebali et al., "Conjugate Effects of Buoyancy and Magnetic Field on Heat and Fluid Flow Pattern at Low-to-Moderate Prandtl Numbers", International Letters of Chemistry, Physics and Astronomy, Vol. 66, pp. 79-95, 2016

Online since:

May 2016

Authors:

Keywords:

Distribution:

Open Access

This work is licensed under a

Creative Commons Attribution 4.0 International License

References:

[1] Gelfgat, A. Y. and P. -Z. Bar-Yoseph, The effect of an external magnetic field on oscillatory instability of convective flows in a rectangular cavity. Physic of Fluids, 2001. 13(8), pp.2269-2278.

DOI: 10.1063/1.1383789[2] Roussellet, V., X. Niu, H. Yamaguchi and F. Magoulés, Natural convection of temperature-sensitive magnetic fluids in porous media. Advances in Applied Mathematics and Mechanics, 2011. 3(1), pp.121-130.

DOI: 10.4208/aamm.10-m1036[3] Hadavand, M. and A.C.M. Sousa, Simulation of thermomagnetic convection in a cavity using the lattice Boltzmann model, Journal of Applied Mathematics. 2011. Article ID 538637, 14 pages; doi: 10. 1155/2011/538637.

DOI: 10.1155/2011/538637[4] Ece, M.C. and Büyük E. (2006): Natural-convection flow under a magnetic field in an inclined rectangular enclosure heated and cooled on adjacent walls. Fluid Dynamics Research, vol. 38, pp.564-590.

DOI: 10.1016/j.fluiddyn.2006.04.002[5] Hasanpour, A., Farhadi, M., K. Sedighi and H. R. Ashorynejad, Numerical Study of Prandtl Effect on MHD Flow at a Lid-Driven Porous Cavity. International Journal for Numerical Methods in Fluids, 2012. 70(7), pp.886-898.

DOI: 10.1002/fld.2719[6] Jina, L. and X. -R. Zhang, Analysis of temperature-sensitive magnetic fluids in a porous square cavity depending on different porosity and Darcy number. Applied Thermal Engineering, 2013. 50(1), p.1–11.

DOI: 10.1016/j.applthermaleng.2012.05.016[7] Bao J., Schaefer L., Lattice Boltzmann equation model for multi-component multi-phase flow with high density ratios, Applied Mathematical Modelling, 37(4), 2013, pp.1860-1871.

DOI: 10.1016/j.apm.2012.04.048[8] Chieh-Li C., Shing-Cheng C., Cha'o-Kuang C., Chun-Kai C., Lattice Boltzmann simulation for mixed convection of nanofluids in a square enclosure, Applied Mathematical Modelling, 39(8), 2015, pp.2436-2451.

DOI: 10.1016/j.apm.2014.10.049[9] Taghilou M., Rahimian M. H., Lattice Boltzmann model for thermal behavior of a droplet on the solid surface, International Journal of Thermal Sciences, 86, 2014, pp.1-11.

DOI: 10.1016/j.ijthermalsci.2014.06.006[10] R. Djebali, ElGanaoui, M., Jaouabi A., Pateyron B.; Lattice Boltzmann scrutiny of spray jet and impact characteristics under dispersion effects of powder injection parameters in APS process; International Journal of Thermal Sciences, vol. 100, pp.229-239, (2016).

DOI: 10.1016/j.ijthermalsci.2015.09.027[11] Hao, L., Xinhua, L. and Yongzhi, L., The lattice Boltzmann simulation of magnetic fluid, Procedia Engineering, 2011. 15, pp.3948-3953.

DOI: 10.1016/j.proeng.2011.08.739[12] Chatterjee, D. and S. Amiroudine, Lattice Boltzmann simulation of thermofluidic transport phenomena in a DC magnetohydrodynamic (MHD) micropump. Biomed Microdevices, 2011. 13, p.147–157.

DOI: 10.1007/s10544-010-9480-8[13] Han, C. Y., Effect of a magnetic field on natural convection of an electrically conducting fluid in a tilted cavity. Journal of the Korean Physical Society, 2009. 55(5), pp.2193-2199.

[14] Zhang, X. -R., L. -C. Jin, X. -D. Niu, and H. Yamaguchi, Lattice Boltzmann simulation for magnetic fluids in porous medium. Physics Procedia, 2010. 9, pp.162-166.

DOI: 10.1016/j.phpro.2010.11.037[15] Madabhushi, R.K. and S.P. Vanka, Large eddy simulation of turbulence driven secondary flow in a square duct. Physic of Fluids A, 1991. 3, pp.2734-2745.

DOI: 10.1063/1.858163[16] Djebali, R., B. Pateyron, and M. El Ganaoui, A lattice Boltzmann-based study of plasma sprayed particles behaviours. CMC: Computers, Materials & Continua, 2011. 25(2), pp.159-176.

[17] Djebali, R. and M. El Ganaoui, Assessment and computational improvement of thermal lattice Boltzmann models based benchmark computations. CMES: Computer Modeling in Engineering & Sciences, 2011. 71 (3), pp.179-202.

[18] Djebali, R., M. El Ganaoui, R. Pateyron, and H. Sammouda, Simulation and modeling of turbulent plasma jet based on axisymetric LBGK model. Defect and Diffusion Forum, 2011. vols. 312-315, pp.1167-1171.

DOI: 10.4028/www.scientific.net/ddf.312-315.1167[19] Djebali, R. , M. El Ganaoui and B. Pateyron, A lattice Boltzmann based investigation of powder in-flight characteristics during APS process, Part I: modelling and validation. Progress in Computational Fluid Dynamics: an int. Journal, 2012. 12(4), pp.270-278.

DOI: 10.1504/pcfd.2012.048250[20] El Ganaoui, M. and R. Djebali, Aptitude of a lattice Boltzmann method for evaluating transitional thresholds for low Prandtl number flows in enclosures, Compte Rendu Mecanique, 2010. 338, pp.85-96.

DOI: 10.1016/j.crme.2009.12.008[21] Zou, Q. and X. He, On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Physics of Fluids, 1997. 9(6), pp.1591-1598.

DOI: 10.1063/1.869307[22] Linthorst, S. J., M. W. M. M. Schinkel and C. J. Hoogendoorn, Flow structure with natural convection in inclined air-filled enclosures. ASME J. Heat Transfer, 1981. 103(3), pp.535-539.

DOI: 10.1115/1.3244498[23] Rudraiah, N., R. M. Barron, M. Venkatachalappa and C.K. Subbaray, Effect of a magnetic field on free convection in a rectangular enclosure, International Journal of Engineering Sciences, 1995. 33(8), pp.1075-1084.

DOI: 10.1016/0020-7225(94)00120-9[24] Sathiyamoorthy, M. and A. J. Chamkha, Natural convection flow under magnetic field in a square cavity for uniformly (or) linearly heated adjacent walls. Int. J. of Numerical Methods for Heat & Fluid Flow, 2012. 22(5), pp.677-698.

DOI: 10.1108/09615531211231307[25] Hammami F., Ben Cheikh N., Ben Beya B., On the Importance of the Influence of both Velocity and Aspect Ratios on the Occurrence of Bifurcation Phenomena within a Two-Sided Lid-Driven Enclosure, International Letters of Chemistry, Physics and Astronomy, Vol. 55, pp.160-172, (2015).

DOI: 10.18052/www.scipress.com/ilcpa.55.162