Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 66 > Homogeneous and Heterogeneous Combustion in...
< Back to Volume

Homogeneous and Heterogeneous Combustion in Hydrogen-Fueled Catalytic Microreactors

Full Text PDF

Abstract:

The hetero-/homogeneous combustion and interaction of hydrogen-fueled catalytic microreactors were investigated numerically. A two-dimensional CFD (computational fluid dynamics) model was developed, using elementary homogeneous and heterogeneous chemical reaction schemes, surface radiation heat transfer, heat conduction in the solid wall, and external heat losses. Computations were carried out to study the effects of the wall thermal conductivity, equivalence ratio, microreactor dimension, and inlet velocity on combustion characteristics, flame stability, and hetero-/homogeneous interaction. Despite the micro-scale, large transverse gradients in species mass fractions and temperature exist in the fluid and large axial gradients in temperature may exist in the walls. Wall thermal conductivity is crucial in determining the flame stability, as the walls transfer heat upstream for ignition of the cold incoming reactants but at the same time are responsible for heat losses. Combustible mixtures with compositions away from the stoichiometric point decrease the homogeneous chemistry contribution and the operating temperature. The microreactor dimension and inlet velocity have a strong effect on homogeneous flame stability. Smaller microreactors result in extinction because of the inhibition of homogeneous combustion induced by heterogeneous reaction; larger microreactors result in blowout due to the reduction of the heterogeneous contribution. Hetero-/homogeneous interaction maps were constructed in terms of microreactor dimension and inlet velocity.

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 66)
Pages:
133-142
Citation:
J. J. Chen and B. F. Liu, "Homogeneous and Heterogeneous Combustion in Hydrogen-Fueled Catalytic Microreactors", International Letters of Chemistry, Physics and Astronomy, Vol. 66, pp. 133-142, 2016
Online since:
May 2016
Export:
Distribution:
References:

[1] R. Sui, N.I. Prasianakis, J. Mantzaras, N. Mallya, J. Theile, D. Lagrange, and M. Friess, An experimental and numerical investigation of the combustion and heat transfer characteristics of hydrogen-fueled catalytic microreactors, Chem. Eng. Sci. 141 (2016).

DOI: https://doi.org/10.1016/j.ces.2015.10.034

[2] I. Alam, D.H. West, and V. Balakotaiah, Transport effects on pattern formation and maximum temperature in homogeneous-heterogeneous combustion, Chem. Eng. J. 288 (2016) 99-115.

DOI: https://doi.org/10.1016/j.cej.2015.11.053

[3] G.D. Stefanidis and D.G. Vlachos, Controlling homogeneous chemistry in homogeneous-heterogeneous reactors: Application to propane combustion, Ind. Eng. Chem. Res. 48 (2009) 5962-5968.

DOI: https://doi.org/10.1021/ie801480m

[4] L. Huang, J. Xie, W. Chu, R. Chen, D. Chu, and A.T. Hsu, Iron-promoted nickel-based catalysts for hydrogen generation via auto-thermal reforming of ethanol, Catal. Commun. 10 (2009) 502-508.

DOI: https://doi.org/10.1016/j.catcom.2008.10.018

[5] A. Brambilla, C.E. Frouzakis, J. Mantzaras, A. Tomboulides, S. Kerkemeier, and K. Boulouchos, Detailed transient numerical simulation of H2/air hetero-/homogeneous combustion in platinum-coated channels with conjugate heat transfer, Combust. Flame 161 (2014).

DOI: https://doi.org/10.1016/j.combustflame.2014.04.003

[6] S. Karagiannidis, J. Mantzaras, and K. Boulouchos, Stability of hetero-/homogeneous combustion in propane- and methane-fueled catalytic microreactors: Channel confinement and molecular transport effects, Proc. Combust. Inst. 33 (2011) 3241-3249.

DOI: https://doi.org/10.1016/j.proci.2010.05.107

[7] M. Baigmohammadi, S. Tabejamaat, and J. Zarvandi, Numerical study of the behavior of methane-hydrogen/air pre-mixed flame in a micro reactor equipped with catalytic segmented bluff body, Energy 85 (2015) 117-144.

DOI: https://doi.org/10.1016/j.energy.2015.03.080

[8] Y. Ghermay, J. Mantzaras, R. Bombach, and K. Boulouchos, Homogeneous combustion of fuel-lean H2/O2/N2 mixtures over platinum at elevated pressures and preheats, Combust. Flame 158 (2011) 1491-1506.

DOI: https://doi.org/10.1016/j.combustflame.2010.12.025

[9] C. Appel, J. Mantzaras, R. Schaeren, R. Bombach, A. Inauen, B. Kaeppeli, B. Hemmerling, and A. Stampanoni, An experimental and numerical investigation of homogeneous ignition in catalytically stabilized combustion of hydrogen/air mixtures over platinum, Combust. Flame 128 (2002).

DOI: https://doi.org/10.1016/s0010-2180(01)00363-7

[10] M. Maestri, A. Beretta, T. Faravelli, G. Groppi, and E. Tronconi, Role of gas-phase chemistry in the rich combustion of H2 and CO over a Rh/Al2O3 catalyst in annular reactor, Chem. Eng. Sci. 62 (2007) 4992-4997.

DOI: https://doi.org/10.1016/j.ces.2007.01.060

[11] X. Zheng, J. Mantzaras, and R. Bombach, Kinetic interactions between hydrogen and carbon monoxide oxidation over platinum, Combust. Flame 161 (2014) 332-346.

DOI: https://doi.org/10.1016/j.combustflame.2013.07.021

[12] J. Mantzaras, R. Bombach, and R. Schaeren, Hetero-/homogeneous combustion of hydrogen/air mixtures over platinum at pressures up to 10 bar, Proc. Combust. Inst. 32 (2009) 1937-(1945).

DOI: https://doi.org/10.1016/j.proci.2008.06.067

[13] M.P. Burke, M. Chaos, Y. Ju, F.L. Dryer, and S.J. Klippenstein, Comprehensive H2/O2 kinetic model for high-pressure combustion, Int. J. Chem. Kinet. 44 (2012) 444-474.

DOI: https://doi.org/10.1002/kin.20603

[14] J. Li, Z. Zhao, A. Kazakov, and F.L. Dryer, An updated comprehensive kinetic model of hydrogen combustion, Int. J. Chem. Kinet. 36 (2004) 566-575.

DOI: https://doi.org/10.1002/kin.20026

[15] O. Deutschmann, L.I. Maier, U. Riedel, A.H. Stroemman, and R.W. Dibble, Hydrogen assisted catalytic combustion of methane on platinum, Catal. Today 59 (2000) 141-150.

DOI: https://doi.org/10.1016/s0920-5861(00)00279-0

[16] H.A. Uranakara, S. Chaudhuri, H.L. Dave, P.G. Arias, and H.G. Im, A flame particle tracking analysis of turbulence-chemistry interaction in hydrogen-air premixed flames, Combust. Flame 163 (2016) 220-240.

DOI: https://doi.org/10.1016/j.combustflame.2015.09.033

[17] D.G. Norton and D.G. Vlachos, A CFD study of propane/air microflame stability, Combust. Flame 138 (2004) 97-107.

DOI: https://doi.org/10.1016/j.combustflame.2004.04.004

[18] D.G. Norton and D.G. Vlachos, Combustion characteristics and flame stability at the microscale: a CFD study of premixed methane/air mixtures, Chem. Eng. Sci. 58 (2003) 4871-4882.

DOI: https://doi.org/10.1016/j.ces.2002.12.005

[19] C.H. Kuo and P.D. Ronney, Numerical modeling of non-adiabatic heat-recirculating combustors, Proc. Combust. Inst. 31 (2007) 3277-3284.

DOI: https://doi.org/10.1016/j.proci.2006.08.082

[20] P.D. Ronney, Analysis of non-adiabatic heat-recirculating combustors, Combust. Flame 135 (2003) 421-439.

DOI: https://doi.org/10.1016/j.combustflame.2003.07.003

[21] A.D. Stazio, C. Chauveau, G. Dayma, and P. Dagaut, Combustion in micro-channels with a controlled temperature gradient, Exp. Therm Fluid Sci. 73 (2016) 79-86.

DOI: https://doi.org/10.1016/j.expthermflusci.2015.09.020

[22] E. Miyata, N. Fukushima, Y. Naka, M. Shimura, M. Tanahashi, and T. Miyauchi, Direct numerical simulation of micro combustion in a narrow circular channel with a detailed kinetic mechanism, Proc. Combust. Inst. 35 (2015) 3421-3427.

DOI: https://doi.org/10.1016/j.proci.2014.07.057

[23] C. -H. Leu, S. -C. King, J. -M. Huang, C. -C. Chen, S. -S. Tzeng, C. -I. Lee, W. -C. Chang, C. -C. Yang, Visible images of the catalytic combustion of methanol in a micro-channel reactor, Chem. Eng. J. 226 (2013) 201-208.

DOI: https://doi.org/10.1016/j.cej.2013.04.040

[24] D.G. Norton and D.G. Vlachos, Hydrogen assisted self-ignition of propane/air mixtures in catalytic microburners, Proc. Combust. Inst. 30 (2005) 2473-2480.

DOI: https://doi.org/10.1016/j.proci.2004.08.188

[25] E.D. Tolmachoff, A.D. Booth, I.C. Lee, W.R. Allmon, and C.M. Waits, Modeling and experimental analysis of n-dodecane oxidation in platinum-coated channels, Combust. Flame 162 (2015) 3674-3680.

DOI: https://doi.org/10.1016/j.combustflame.2015.07.006

[26] K. Gosiewski, Y.S. Matros, K. Warmuzinski, M. Jaschik, and M. Tanczyk, Homogeneous vs. catalytic combustion of lean methane-air mixtures in reverse-flow reactors, Chem. Eng. Sci. 63 (2008) 5010-5019.

DOI: https://doi.org/10.1016/j.ces.2007.09.013

[27] S.W. Jeon, W.J. Yoon, M.W. Jeong, and Y. Kim, Optimization of a counter-flow microchannel reactor using hydrogen assisted catalytic combustion for steam reforming of methane, Int. J. Hydrogen Energy 39 (2014) 6470-6478.

DOI: https://doi.org/10.1016/j.ijhydene.2014.02.012

[28] G.A. Boyarko, C. -J. Sung, and S.J. Schneider, Catalyzed combustion of hydrogen-oxygen in platinum tubes for micro-propulsion applications, Proc. Combust. Inst. 30 (2005) 2481-2488.

DOI: https://doi.org/10.1016/j.proci.2004.08.203
Show More Hide