This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] M.S. Batista, R.K.S. Santos, E.M. Assaf, J.M. Assaf, E.A. Ticianelli, High efficiency steam reforming of ethanol by cobalt-based catalysts, J. Power Sources 134 (2004) 27-32.
DOI: https://doi.org/10.1016/j.jpowsour.2004.01.052[2] D.K. Liguras, D.I. Kondarides, X.E. Verykios, Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts, Appl. Catal. B43 (2003) 345-354.
DOI: https://doi.org/10.1016/s0926-3373(02)00327-2[3] J. Llorca, N. Homs, J. Sales, P.R. de la Piscina, Efficient production of hydrogen over supported cobalt catalysts from ethanol steam reforming, J. Catal. 209 (2002) 306-317.
DOI: https://doi.org/10.1006/jcat.2002.3643[4] P.D. Vaidya, A.E. Rodrigues, Insights into steam reforming of ethanol to produce hydrogen for fuel cells, Chem. Eng. J. 117 (2006) 39-49.
[5] P.K. Cheekatamarla, C.M. Finnerty, Reforming catalysts for hydrogen generation in fuel cell applications, J. Power Sources 160 (2006) 490-499.
DOI: https://doi.org/10.1016/j.jpowsour.2006.04.078[6] H. Song, L. Zhang, R.B. Watson, D. Braden, U.S. Ozkan, Investigation of bio-ethanol steam reforming over cobalt-based catalysts, Catal. Today 129 (2007) 346-354.
DOI: https://doi.org/10.1016/j.cattod.2006.11.028[7] E.B. Pereira, N. Homs, S. Marti, J.L.G. Fierro, P.R. de la Piscina, Oxidative steam-reforming of ethanol over Co/SiO2, Co-Rh/SiO2 and Co-Ru/SiO2 catalysts: catalytic behavior and deactivation/regeneration processes, J. Catal. 257 (2008) 206-214.
DOI: https://doi.org/10.1016/j.jcat.2008.05.001[8] J. Llorca, N. Homs, P.R. de la Piscina, In situ DRIFT-mass spectrometry study of the ethanol steam-reforming reaction over carbonyl-derived Co/ZnO catalysts, J. Catal. 227 (2004) 556-560.
DOI: https://doi.org/10.1016/j.jcat.2004.08.024[9] L.P.R. Profeti, E.A. Ticianelli, E.M. Assaf, Co/Al2O3 catalysts promoted with noble meals for production of hydrogen by methane steam reforming, J. Power Sources 175 (2008) 482-489.
DOI: https://doi.org/10.1016/j.fuel.2007.10.015[10] B. Zhang, X. Tang, Y. Li, W. Cai, Y. Xu, W. Shen, Steam reforming of bio-ethanol for the production of hydrogen over ceria supported Co, Ir and Ni catalysts, Catal. Commun. 7 (2006) 367-372.
DOI: https://doi.org/10.1016/j.catcom.2005.12.014[11] H. Wang, J.L. Ye, Y. Liu, Y.D. Lin, Y.N. Qin, Steam reforming of ethanol over Co3O4/CeO2 catalysts prepared by different methods, Catal. Today 129 (2007) 305-312.
DOI: https://doi.org/10.1016/j.cattod.2006.10.012[12] P. Ciambelli, V. Palma, A. Ruggiero, Low temperature catalytic steam reforming of ethanol: 1. The effect of the support on the activity and stability of Pt catalysts, Appl. Catal. B96 (2010) 18-27.
DOI: https://doi.org/10.1016/j.apcatb.2010.01.029[13] G. Jacobs, P.M. Patterson, U.M. Graham, D.E. Sparks, B.H. Davis, Low temperature water-gas shift: kinetic isotope effect observed for decomposition of surface formates for Pt/ceria catalysts, Appl. Catal. A269 (2004) 63-73.
DOI: https://doi.org/10.1016/j.apcata.2004.03.049[14] C. Lamonier, A. Ponchel, A. D'Huysser, L. Jalowiecki-Duhamel, Studies of the Cerium-Metal-Oxygen-Hydrogen system (Metal = Cu, Ni), Catal. Today 50 (1999) 247-259.
DOI: https://doi.org/10.1016/s0920-5861(98)00507-0[15] P. Ciambelli, V. Palma, A. Ruggiero, Low temperature catalytic steam reforming of ethanol: 2. Preliminary kinetic investigation of Pt/CeO2 catalysts, Appl. Catal. B96 (2010) 190-197.
DOI: https://doi.org/10.1016/j.apcatb.2010.02.019[16] S.M. de Lima, A.M. da Silva, G. Jacobs, B.H. Davis, L.V. Mattos, F.B. Noronha, New approaches to improving catalyst stability over Pt/ceria during ethanol steam reforming: Sn addition and CO2 co-feeding, Appl. Catal. B96 (2010) 387-398.
DOI: https://doi.org/10.1016/j.apcatb.2010.02.036[17] B. Zhang, W. Cai, Y. Li, Y. Xu, W. Shen, Hydrogen production by steam reforming of ethanol over an Ir/CeO2 catalyst: Reaction mechanism and stability of the catalyst, Int. J. Hydrogen Energy 33 (2008) 4377-4386.
DOI: https://doi.org/10.1016/j.ijhydene.2008.05.022[18] J.Y. Siang, C.C. Lee, C.H. Wang, W.T. Wang, C.Y. Deng, C.T. Yeh, C.B. Wang, Hydrogen production from steam reforming of ethanol using a ceria-supported iridium catalyst: Effect of different ceria supports, Int. J. Hydrogen Energy 35 (2010).
DOI: https://doi.org/10.1016/j.ijhydene.2010.01.067[19] W. Cai, F. Wang, E. Zhan, A.C.V. Veen, C. Mirodatos, W. Shen, Hydrogen production from ethanol over Ir/CeO2 catalysts: A comparative study of steam reforming, partial oxidation and oxidative steam reforming, J. Catal. 257 (2008) 96-107.
DOI: https://doi.org/10.1016/j.jcat.2008.04.009[20] J. Llorca, P.R. de la Piscina, J.A. Dalmon, J. Sales, N. Homs, CO-free hydrogen from steam-reforming of bioethanol over ZnO-supported cobalt catalysts: Effect of metallic precursor, Appl. Catal. B43 (2003) 355-369.
DOI: https://doi.org/10.1016/s0926-3373(02)00326-0[21] D.R. Mullins, Adsorption of CO and C2H4 on Rh-loaded thin-film praseodymium oxide, Surf. Sci. 556 (2004) 159-170.
DOI: https://doi.org/10.1016/j.susc.2004.03.011[22] F. Wang, W. Cai, H. Provendier, Y. Schuurman, C. Descorme, C. Mirodatos, W. Shen, Hydrogen production from ethanol steam reforming over Ir/CeO2 catalysts: enhanced stability by PrOx promotion, Int. J. Hydrogen Energy 36 (2011) 13566-13574.
DOI: https://doi.org/10.1016/j.ijhydene.2011.07.091[23] Z. Song, W. Liu, H. Nishiguchi, A. Takami, K. Nagaoka, Y. Takita, The Pr promotion effect on oxygen storage capacity of Ce-Pr oxides studied using a TAP reactor, Appl. Catal. A329 (2007) 86-92.
DOI: https://doi.org/10.1016/j.apcata.2007.06.023[24] M.N. Barroso, A.E. Galetti, M.C. Abello, Ni catalysts supported over MgAl2O4 modified with Pr for hydrogen production from ethanol steam reforming, Appl. Catal. A394 (2011) 124-131.
DOI: https://doi.org/10.1016/j.apcata.2010.12.038[25] S.S.Y. Lin, H. Daimon, S.Y. Ha, Co/CeO2-ZrO2 catalysts prepared by impregnation and coprecipitation for ethanol steam reforming, Appl. Catal. A366 (2009) 252-261.
DOI: https://doi.org/10.1016/j.apcata.2009.07.010[26] G.R. Rao, H.R. Sahu, B.G. Mishra, Surface and catalytic properties of Cu-Ce-O composite oxides prepared by combustion method, Colloids and Surf. A220 (2003) 261-269.
DOI: https://doi.org/10.1016/s0927-7757(03)00080-3[27] A. Trovarelli, Catalytic properties of ceria and CeO2-containing materials, Catal. Rev. Sci. Eng. 38 (1996) 439-520.
DOI: https://doi.org/10.1080/01614949608006464[28] T. Masui, Y. Peng, K. Machida, G. Adachi, Reduction behavior of CeO2-ZrO2 solid solution prepared from cerium zirconyl oxalate, Chem. Mater. 10 (1998) 4005-4009.
DOI: https://doi.org/10.1021/cm980443q[29] N. Hickey, P. Fornasiero, R.D. Montre, J. Kaspar, M. Graziani, G. Dolcetti, A comparative study of oxygen storage capacity over Ce0. 6Zr0. 4O2 mixed oxides investigated by temperature-programmed reduction and dynamic OSC measurements, Catal. Lett. 72 (2001).
[30] B.M. Reddy, G. Thrimurthulu, L. Katta, Structural characteristics and catalytic activity of nanocrystalline ceria-praseodymia solid solutions, J. Phys. Chem. C113 (2009) 15882-15890.
DOI: https://doi.org/10.1021/jp903644y[31] X. Hu, G. Lu, Investigation of the steam reforming of a series of model compounds derived from bio‐oil for hydrogen production, Appl. Catal. B88 (2009) 376-385.
DOI: https://doi.org/10.1016/j.apcatb.2008.10.021[32] Josh Y.Z. Chiou, H.Y. Kung, C.B. Wang, Highly stable and active Ni-doped ordered mesoporous carbon catalyst on the steam reforming of ethanol application, J. Saudi Chem. Soc. Accept (2015).
DOI: https://doi.org/10.1016/j.jscs.2015.10.006