Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 65 > Molar Concentration Effects on the Optical and...
< Back to Volume

Molar Concentration Effects on the Optical and Structural Properties of Nanostructural SnO2 Thin Films

Full Text PDF

Abstract:

Thin films of nanostructured SnO2 with different molarites were prepared by chemical spray pyrolysis technique. XRD analysis reveals that all the films were tetragonal polycrystalline with a preferred orientation along (110) plane. AFM measurements indicate that the value of the grain size for 0.05 M, 0.1 M and 0.15 M were 111nm, 78 nm and 58 nm respectively. SEM micrograph proved the existence of small cracks on the film surface, EDS confirmed the composition percentage ratio of Sn and O­2 and no trace of impurities could be detected. PL spectra gives the indication about optical energy gap and the effect of concentration on it which appeared as a blue shift. The transmittance was studied for the deposited thin films, identifying that the transmittance decreases by the increase in molarity. The value of the optical energy gap of the deposited thin films was increased upon increasing molar concentration due o quantum confinement effect. The Urbach energy was also studied, their values decrease as the molar concentration increase.

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 65)
Pages:
80-90
Citation:
N. F. Habubi et al., "Molar Concentration Effects on the Optical and Structural Properties of Nanostructural SnO2 Thin Films", International Letters of Chemistry, Physics and Astronomy, Vol. 65, pp. 80-90, 2016
Online since:
Apr 2016
Export:
Distribution:
References:

[1] E. Elangovan, K. Ramamurthi , A study on low cost-high conducting fluorine and antimony-doped tin oxide thin films, ‏‏ Applied Surface Science 249 (2005) 183–196.

DOI: https://doi.org/10.1016/j.apsusc.2004.11.074

[2] A.V. Moholkar, S.M. Pawar, K.Y. Rajpure, C.H. Bhosale, Effect of concentration of SnCl4 on sprayed fluorine doped tin oxide thin films‏‏, Journal of Alloys and Compounds 455 (2008) 440–446.

DOI: https://doi.org/10.1016/j.jallcom.2007.01.160

[3] M. Ait Aouaj , R. Diaz , A. Belayachi , F. Rueda , M. Abd-Lefdil , Comparative study of ITO and FTO thin films grown by spray pyrolysis‏‏ , Materials Research Bulletin 44 (2009) 1458–1461.

DOI: https://doi.org/10.1016/j.materresbull.2009.02.019

[4] E. Çetinörgü , S. Goldsmith , R.L. Boxman , Effect of deposition conditions on the characteristics of ZnO–SnO2 thin films deposited by filtered vacuum arc , Thin Solid Films 515 (2006) 880–884.

DOI: https://doi.org/10.1016/j.tsf.2006.07.050

[5] J. Santos-Pena , T. Rousse , L. anchez, J. Morales and D. M. chleich , Antimony doping effect on the electrochemical behavior of SnO2 thin film electrodes‏‏ , Journal of Power Sourses 97-98(2001) 232-234.

DOI: https://doi.org/10.1016/s0378-7753(01)00620-6

[6] D.W. Sheel , H.M. Yates , P. Evans , U. Dagkaldiran , A. Gordijn , F. Finger , Z. Remes , and M. Vanecek, Atmospheric pressure chemical vapour deposition of F doped SnO2 for optimum performance solar cells, Thin Solid Films 517 (2009) 3061–3065.

DOI: https://doi.org/10.1016/j.tsf.2008.11.121

[7] Sardar M. Ayub Durrani, Biasing voltage dependence of sensitivity of electron beam evaporated SnO2 thin film CO sensor, Sensors 6 (2006) 1153-1160.

DOI: https://doi.org/10.3390/s6091153

[8] Biplob Mondala, Borat Basumataria, Jayoti Das, Chirosree Roychaudhury, Hiranmay Saha, Nillohit Mukherjee, ZnO–SnO2 based composite type gas sensor for selective hydrogen sensing‏‏, Sensors and Actuators B , 194 (2014) 389-396.

DOI: https://doi.org/10.1016/j.snb.2013.12.093

[9] S.A. Pianaro , P.R. Bueno, E. Longo, J.A. Varela , Microstructure and electric properties of a SnO2 based varistor‏‏, Ceramics International 25 (1999) 1-6.

DOI: https://doi.org/10.1016/s0272-8842(97)00076-x

[10] G Mandal and T Ganguly, Applications of nanomaterials in the different fields of photosciences‏‏, Indian J. Phys. 85 (2011)1229-1245.

DOI: https://doi.org/10.1007/s12648-011-0149-9

[11] Jun-Bo Han, Hui-Jun Zhou, Qu-Quan Wang , Conductivity and optical nonlinearity of Sb doped SnO2 films‏‏, Materials Letters 60 (2006) 252 – 254.

DOI: https://doi.org/10.1016/j.matlet.2005.08.032

[12] Sk. F. Ahmed, S. Khan, P. K. Ghosh, M. K. Mitra, K. K. Chattopadhyay, Effect of Al doping on the conductivity type inversion and electro-optical properties of SnO2 thin films synthesized by sol-gel technique, Journal of Sol-Gel Science and Technology 9 (2006).

DOI: https://doi.org/10.1007/s10971-006-7808-x

[13] M. Gaidi,A. Hajjaji,R. Smirani, B. Bessais and M. A. El Khakani, Structure and photoluminescence of ultrathin films of SnO2 nanoparticles synthesized by means of pulsed laser deposition , Journal of Applied Physics 108 (2010) 063537 -5.

DOI: https://doi.org/10.1063/1.3485811

[14] P. Mitra and S. Mondal , Hydrogen and LPG sensing properties of SnO2 films obtained by direct oxidation of SILAR deposited SnS, Bulletin of The Polish Academy of Sciences 56(2008) 295-300.

[15] V. Senthilkumar, P. Vickraman, Structural, optical and electrical studies on nanocrystalline tin oxide (SnO2) thin films by electron beam evaporation technique Journal of Materials Science: Materials in Electronics 21 (2010) 578-583.

DOI: https://doi.org/10.1007/s10854-009-9960-x

[16] M. Maleki, S. M. Rozati, An economic CVD technique for pure SnO2 thin films deposition: Temperature effects‏‏, Bulletin of Materials Science 36 (2013) 217-221.

DOI: https://doi.org/10.1007/s12034-013-0460-5

[17] Patrick Mwathe , Robinson Musembi , Mathew Munji , Victor Odari , Lawrence Munguti , Alex Ntilakigwa , John Nguu and Boniface Muthoka , Effect of Surface Passivation on Electrical Properties of Pd-F: SnO2 Thin Films Prepared by Spray Pyrolysis Technique, Coatings 4 (2014).

DOI: https://doi.org/10.3390/coatings4040747

[18] Yoon Ho Cho, Xishuang Liang, Yun Chan Kang, Jong-Heun Lee, Ultrasensitive detection of trimethylamine using Rh-doped SnO2 hollow spheres prepared by ultrasonic spray pyrolysis, Sensors and Actuators B 207(2015)330-227.

DOI: https://doi.org/10.1016/j.snb.2014.10.001

[19] Mujdat Caglar a, Saliha Ilican, Yasemin Caglar, Fahrettin Yakuphanoglu, Electrical conductivity and optical properties of ZnO nanostructured thin film‏‏, Applied Surface Science 255 (2009) 4491–4496.

DOI: https://doi.org/10.1016/j.apsusc.2008.11.055

[20] R.R. Kasar, N.G. Deshpande, Y.G. Gudage, J.C. Vyas, Ramphal Sharma, Studies and correlation among the structural, optical and electrical parameters of spray-deposited tin oxide (SnO2) thin films with different substrate temperatures, Physica B 403 (2008).

DOI: https://doi.org/10.1016/j.physb.2008.06.023

[21] H. Yana , G.H. Chen, W.K. Man, S.P. Wong, R.W.M. Kwok, Characterizations of SnO2 thin films deposited on Si substrates‏‏, Thin Solid Films 326 (1998) 88–91.

DOI: https://doi.org/10.1016/s0040-6090(98)00530-6

[22] P.S. Patila, R.K. Kawar, T. Seth, D.P. Amalnerkar, P.S. Chigare , Effect of substrate temperature on structural, electrical and optical properties of sprayed tin oxide (SnO2) thin films‏‏ Ceramics International 29 (2003) 725–734.

DOI: https://doi.org/10.1016/s0272-8842(02)00224-9

[23] Daoli Zhang , Zhibing Deng, Jianbing Zhang, Liangyan Chen, Microstructure and electrical properties of antimony-doped tin oxide thin film deposited by sol–gel process Materials Chemistry and Physics 98 (2006) 353–357.

DOI: https://doi.org/10.1016/j.matchemphys.2005.09.038

[24] D. Maestre, A. Cremades, J. Piqueras, Direct observation of potential barrier formation at grain boundaries of SnO2 ceramics‏‏, Semicond. Sci. Technol. 19 (2004) 1236-2239.

DOI: https://doi.org/10.1088/0268-1242/19/11/004

[25] [ M. -M. Bagheri-Mohagheghi, N. Shahtahmasebi, M.R. Alinejad, A. Youssefi, M. Shokooh-Saremi, Fe-doped SnO2 transparent semi-conducting thin films deposited by spray pyrolysis technique: thermoelectric and p-type conductivity properties, Solid State Sciences 11 (2009).

DOI: https://doi.org/10.1016/j.solidstatesciences.2008.05.005

[26] Chang Q Sun, T P Chen, B K Tay, S Li, H Huang, Y B Zhang, L K Pan, S P Lau and X W Sun, An extended quantum confinement 'theory: surface-coordination imperfection modifies the entire band structure of a nanosolid, J. Phys. D: Appl. Phys. 34 (2001).

DOI: https://doi.org/10.1088/0022-3727/34/24/308

[27] Panagiotis Poulopoulos, Bjo¨ rn Lewitz, Andreas Straub, Spiridon D. Pappas, Sotirios A. Droulias, Sotirios Baskoutas, and Paul Fumagalli , Band-gap tuning at the strong quantum confinement regime in magnetic semiconductor EuS thin films‏‏, Applied Physics Letters 100 (2012).

DOI: https://doi.org/10.1063/1.4720167

[28] J. Tauc, in: F. Abele's (Ed. ), Optical Properties of Solid, Elsevier, Amsterdam, 1971, p.277.

[29] Ebru S¸enadım Tu¨zemen , Sıtkı Eker , Hamide Kavak, Ramazan Esen, Dependence of film thickness on the structural and optical properties of ZnO thin films‏‏, Applied Surface Science 255 (2009) 6195–6200.

DOI: https://doi.org/10.1016/j.apsusc.2009.01.078

[30] Nese Kavasoglu, A. Sertap Kavasoglu, Metal–semiconductor transition in undoped ZnO films deposited by spray pyrolysis‏‏, Physica B 403 (2008) 2807–2810.

DOI: https://doi.org/10.1016/j.physb.2008.02.016

[31] Mohsen Ghasemi Varnamkhasti, Hamid Reza Fallah, Mehdi Zadsar , Effect of heat treatment on characteristics of nanocrystalline ZnO films by electron beam evaporation, Vacuum 86 (2012) 871-875.

DOI: https://doi.org/10.1016/j.vacuum.2011.03.017

[32] F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids‏‏, Phys. Rev. 92 (1953) 1324.

DOI: https://doi.org/10.1103/physrev.92.1324

[33] Achour Rahal1, Said Benramache and Boubaker Benhaoua, The effect of the film thickness and doping content of SnO2: F thin films prepared by the ultrasonic spray method, Journal of Semiconductors 34 (2013) 093003-5.

DOI: https://doi.org/10.1088/1674-4926/34/9/093003
Show More Hide