This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] Mortazavi M. A et al. Second-order nonlinear optical properties of poled Coumaromethacrylate copolymers, Appl. Phys. B: Lasers Opt, 53 (1991) 287–295.
[2] Duarte F. J, Hillman L. W, Dye laser principles, with applications, Academic Press Inc.: San Diego, CA, (1990).
[3] Kohjiro Hara et al. Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cell, New J. Chem. 27 (2003) 783–785.
DOI: https://doi.org/10.1039/b300694h[4] Amaresh Mishra et al. Metal-free organic dyes for dye-sensitized solar cells: From Structure: Property relationships to design rules, Chem. Int. Ed. 48. (2009) 2474–2499.
DOI: https://doi.org/10.1002/anie.200804709[5] He Zhao et al. Hydrazide-containing inhibitors of HIV-1 integrase, J. Med. Chem. 40 (1997) 242-249.
[6] C. Kontogiorgis, D. Hadjipavlou, Biological evaluation of several coumarin derivatives designed as possible anti-inflammatory/antioxidant agents, J. Enzym. Inhib. Med. Chem. 18(2003)63-69.
DOI: https://doi.org/10.1080/1475636031000069291[7] J. Thipperudrappa, S.M. Hanagodimath, Fluorescence quenching of 1, 4-bis [2-(2-methyl phenyl) ethenyl]-benzene by aniline in benzene-acetonitrile, International journal of Life science and Pharma research. 3 (2013).
[8] P. K Behera, A. K. Mishra, Static and dynamic model for 1-napthol fluorescence quenching by CCl4 in dioxane-acetonitrile mixtures, J. Photochem. Photobiol. A: Chem. 7 (1993) 115-118.
[9] Haruo Schizuka, Toshio Saito and Toshifumi Morita, Fluorescence quenching of aromatic molecules by inorganic anions J. Chem. Phy. Lett. 56 (1978) 519-522.
DOI: https://doi.org/10.1016/0009-2614(78)89030-7[10] Roy. R and Mukherjee.S. Fluorescence quenching of carbozole and indole by Ethylenetrithiocarbonate, J. Chem. Phys. Lett., 140 (1987) 210-214.
DOI: https://doi.org/10.1016/0009-2614(87)80816-3[11] Murat Acar et al. The fluorescence quenching mechanism of coumarin120 with CdS nanoparticles in aqueous suspension, J. Luminescence, 157 (2015) 10–15.
[12] John Olmsted, Oxygen quenching of fluorescence of organic dye molecules, j. Chem. Phy. Lett. 26 (1974) 33-36.
[13] J.S. Kadadevarmath et al. Static and dynamic model fluorescence quenching of laser dye by carbon tetrachloride in binary mixtures, Spectrochim. Acta Part A. 17 (2014) 630–634.
DOI: https://doi.org/10.1016/j.saa.2013.08.053[14] H.M. Suresh Kumar et al. Analysis of fluorescence quenching of new indole derivative, by J. Lumin. 116 (2006) 35–42.
[15] J. R. Mannekutla et al. Fluorescence quenching of UVITEX-OB by aniline in alcohols and Alkanes, Spectroscopy Letters. 39 (2006) 321–335.
DOI: https://doi.org/10.1080/00387010600779229[16] M. Basanagouda et al. Synthesis of some new 4-aryloxmethylcoumarins and examination of their antibacterial and antifungal activities, J. Chem. Sci. 121 (2009) 485–495.
[17] J.M. Frank, S.J. Wawilow, Sphere of action of the extinction phenomena in fluorescent Liquids, Z. Phys. 69 (1931)100-110.
[18] John T. Edward, Molecular volumes and the Stokes–Einstein equation, J. Chem. Edu. 47 (1970).
[19] J. C. Andre, M. Niclause, W. R. Ware, Kinetics of partly diffusion controlled reactions I. Transient and apparent transient effect in fluorescence quenching, Chem. Phys. 28 (1978) 371.
DOI: https://doi.org/10.1016/0301-0104(78)80014-7[20] Zeng H, Durocher G, Analysis of fluorescence quenching in some antioxidants from nonlinear Stern–Volmer Plots, J. Lumin. 63 (1995) 75-84.
DOI: https://doi.org/10.1016/0022-2313(94)00045-e[21] J. Keizer, Non-equilibrium statistical thermodynamics and the effect of diffusion On chemical reaction rates, J. Phys. Chem. 86 (1982) 5052–5067.
[22] G.C. Joshi et al. Diffusion-controlled reactions: Transient effects in the fluorescence Quenching of indole and N-acetyl tryptophan amid in water, J. Phys. Chem. 94 (1990) 2908-2914.
[1] A. Sidarai, V. Desai, S. Hunagund, M. Basanagouda, J. Kadadevarmath, "Effect of solvent polarity on the fluorescence quenching of TMC molecule by aniline in benzene–acetonitrile mixtures", Canadian Journal of Physics, Vol. 94, p. 1125, 2016
DOI: https://doi.org/10.1139/cjp-2016-0213[2] V. Desai, S. Hunagund, M. Basanagouda, J. Kadadevarmath, J. Thipperudrappa, A. Sidarai, "Spectroscopic studies on newly synthesized 5-(2-hydroxy-5-methoxy-phenyl)-2-phenyl-2H-pyridazin-3-one molecule", Journal of Molecular Liquids, Vol. 225, p. 613, 2017
DOI: https://doi.org/10.1016/j.molliq.2016.11.080[3] V. Desai, S. Hunagund, M. Pujar, M. Basanagouda, J. Kadadevarmath, A. Sidarai, "Spectroscopic interactions of titanium dioxide nanoparticles with pharmacologically active 3( 2H )-pyridazinone derivative", Journal of Molecular Liquids, Vol. 233, p. 166, 2017
DOI: https://doi.org/10.1016/j.molliq.2017.03.018[4] V. Desai, S. Hunagund, M. Basanagouda, J. Kadadevarmath, A. Sidarai, "Analysis of Fluorescence Quenching for Newly Synthesized Biologically Active 3(2H)-pyridazinone Derivative by Aniline", Journal of Fluorescence, Vol. 27, p. 1839, 2017
DOI: https://doi.org/10.1007/s10895-017-2121-3[5] V. Desai, S. Hunagund, M. Basanagouda, J. Kadadevarmath, A. Sidarai, "Influence of concentrations of TiO2 nanoparticles on spectroscopic properties of a novel HMPP molecule", Journal of Molecular Liquids, 2018
DOI: https://doi.org/10.1016/j.molliq.2018.09.134[6] A. Nadgir, M. Pujar, V. Desai, A. Sidarai, "Re-usage of the Waste Drug as Molecular Chemosensor for Fe3+ Ion: Application towards Fluorescent Ink", Journal of Fluorescence, 2020
DOI: https://doi.org/10.1007/s10895-020-02573-4