Paper Titles in Periodical
International Letters of Chemistry, Physics and Astronomy
Volume 64

Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 64 > Stability Constant of Rare Earth Metals with...
< Back to Volume

Stability Constant of Rare Earth Metals with Substituted Thiazoles at 298.15K

Full Text PDF

Abstract:

The stability constant on complexation of rare earth metal ions Eu (III), Gd (III), Nd (III) and Tb (III) with substituted thiazole in 70% Dioxane (Dx)-water mixture have been determined by a pH and spectrophotometric method at 298.15K and ionic strength 0.1mol.dm-3 (sodium perchlorate). At constant temperature, the stability constant of the formed complexes decreases in the order Tb (III), Gd (III), Eu (III), Nd (III). The dissociation process is non-spontaneous, endothermic and entrophically unfavorable while formation of metal complexes has been found to be spontaneous, endothermic and entrophically favorable.

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 64)
Pages:
106-109
Citation:
A.B. Naik and M.S. Poharkar, "Stability Constant of Rare Earth Metals with Substituted Thiazoles at 298.15K", International Letters of Chemistry, Physics and Astronomy, Vol. 64, pp. 106-109, 2016
Online since:
Feb 2016
Export:
Distribution:
References:

[1] P. B. Morey and A. B. Naik, Int. Lett. Chem. Phys. Astronomy. 59 (2015) 186-98.

[2] P. B. Morey and A. B. Naik, Int. J Sci. Res. (2015) 211-214.

[3] J. N. Greul, O. Gaertzen, R. Dunkel, S. Hillebrand, K. Ilg, P. Schreiev, V. Hadano, S. Bennabi, US Patent 00300024 A1 (2009).

[4] A. B. Naik, Int. Lett. Chem. Phys. Astronomy. 61 (2015) 105-109.

[5] S. Kok, R. Gambari, C. Chui, M. Yuen, E. Lin, R. Wong, Bio. Med. Chem. 16 (2008) 3626-3631.

[6] M. N. Bhoi, M. A. Borad, H. D. Patel, Synth. Com. 44 (2014) 2427-2457.

[7] S. R. Pattan, A. A. Bukitagar, J. S. Pattan, B. P. Kapadnis, S. G. Jadhav, Ind. J. Chem. 48B (2009) 1033-1037.

[8] S. R. Pattan, C. Suresh, V. D. Pujar, V. V. K. Reddy, V. P. Rasal, B. C. Koti, Ind. J. Chem. 44B (2005) 2404-2408.

[9] A. B. Naik and M. L. Narwade, Russ. J. Coord. Chem. 35(12) (2009) 932-937.

[10] F. Gharib, K Zare, K Majlesi, J. Chem. Engg. Data. 45 (2000) 833-836.

[11] A. B. Naik, World J. Chem. 6(2) (2011) 118-121.

[12] A. A. El-Bindary, A. Z. El-Sonbati, M. A. Diab, S. M. Morgan. J. Mol. Liq. 201 (2015) 36-42.

[13] A. B. Naik and M. L. Narwade, Am-Eur. J. Scientific Res. 3(2) (2008) 212-216.

[14] A. B. Naik and M. L. Narwade, Universal J. Chem. 1(1) (2013) 7-10.

[15] A. I. Vogel, A Text of quantative chemical analysis, Pearson, (2003).

[16] A. I. Vogel, A Text of quantative inorganic analysis, Longmann, London, (1978).

[17] L. Meities, Handbook of analytical Chem. McGraw Hill, New York, 1963, 187.

[18] J. Bjerrum, Metal ammine formation in aqueous solution, Cophenhagen, P Haase and Sons, (1941).

[19] M. Calvin, K. W. Wilson, J. Am. Chem. Soc. 67 (1945) (2003).

[20] P. Job's, Ana. Chem. 9(10) (1928) 113-116.

[21] A. E. Martell, M. Calvin, Chemistry of metal chelate compounds, Prentice Hall, Inc; Now York, 1956, 39-42.

[22] H. M. Irving, H. S. Rossotti, J. Chem. Soc. (1954) 2904-2910.

[23] H. M. Irving, H. S. Rossotti, J. Chem. Soc. (1953) 3397-3405.

Show More Hide