Paper Titles in Periodical
International Letters of Chemistry, Physics and Astronomy
Volume 63


Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 63 > Effect of Poly Ethylene Glycol on CuO...
< Back to Volume

Effect of Poly Ethylene Glycol on CuO Nanoparticles and its Antibacterial Application

Full Text PDF


Pure CuO nanoparticles and chemically-precipitated Poly Ethylene Glycol (PEG) used as a capping agent CuO nanocrystal continuum (0.1, 0.2, 0.3, 0.4, 0.5 gm) was anatomized for structural and morphological research using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and Field - Emission Scanning Electron Microscopy (FE-SEM). Their X-ray Diffraction (XRD) analysis manifested monoclinic crystallinity in pure and PEG-capped CuO nanorods, with an average crystallite size of 21.63nm and 13-16nm respectively. The morphological analysis revealed their structural conformation. The FT-IR spectrum affirmed the presence of Cu-O bonds. The optical property of the aforesaid nanorods was studied by UV-Visible reflectance (UV-Vis DRS). The UV analysis showed that all the capped products show signs of good optical quality in the UV region and also the absorption edge was blue shifted with a band gap of 1.85 eV for 0.4gm PEG capped as results of quantum confinement effect. The antibacterial properties of the as-prepared nanostructures investigated for various human pathogens using disc diffusion method. The result showed the significant antibacterial activity both gram positive and gram negative bacteria.


International Letters of Chemistry, Physics and Astronomy (Volume 63)
T. Hemalatha and S. Akilandeswari, "Effect of Poly Ethylene Glycol on CuO Nanoparticles and its Antibacterial Application", International Letters of Chemistry, Physics and Astronomy, Vol. 63, pp. 111-118, 2016
Online since:
Jan 2016

[1] R.S. Devan, R.A. Patil, J.H. Lin, Y.R. Ma., Appl. Func. Mater. 22 (2012) 3326-3370.

[2] H. Zhu, F. Zhao, L.Q. Pan., J. Appl. Phys. 101 (2007) 09H111-3, doi: 10. 1063/1. 2711711.

[3] S. Sabbaghi1, Heydari Orojlou, M. R. Parvizi, R. Saboori, M. Sahooli., Int. J. Nano Dimens. 3(1) (2012) 69-73.

[4] K. T. Arulmozhi1, and N. Mythili., AIP ADVANCES 3, 122122 (2013).

[5] M.H. Huang, S. Mao, H. Feick., [J] Sience, 292(2001)1897-1899.

[6] X.Y. Zhang, H.C. Ong., [J]. Chem 393(2004) 17- 21.

[7] Vinay Kumar Patel and Shantanu Bhattacharya Appl. Mater. Interfaces 5(2013)13364−13374.

DOI: 10.1021/am404308s

[8] Thi My Dung Dang, Thi Thu Tuyet Le, Eric Fribourg-Blanc, Mau Chien Dang., Adv. Nat. Sci: Nanosci. Nanotechnol. 2 (2011).

DOI: 10.1088/2043-6262/2/2/025004

[9] C. C. Vidyasagar, Y. Arthoba Naik, T. G. Venkatesha, R. Viswanatha., Nano- Micro Lett. 4 (2) (2012)73-77.

[10] Qi Liu, Yongye Liang , Hongjiang Liu , Jianming Hongc, Zheng Xu., Materials Chemistry and Physics 98 (2006)519–522.

DOI: 10.1016/j.matchemphys.2005.09.073

[11] Rashi Gusain and Om P. Khatri., Journal of Materials Chemistry A. 1(2013)5612-5619.

[12] S.Z. Li, H. Zhang, Y.J. Ji, D.R. Yang., Nanotechnology. 15(2004)1428-1432.

[13] A.W. Bauer, W.M.M. Kirby, J.C. Sherris and M. Turck., American J. Clin. Pathol. 45, (1966) 493.

[14] S.M. Hammond and Lambert PA., Antimicrobial actions. London: Edward Arnld Ltd (1978) 8 -9.

[15] L.S. Birks, H. Friedman., J. Appl. Phys. 17(1946)687-692.

[16] Shanmugam Cholan, Nadana Shanmugam, Natesan Kannadasan, Kannadasan Sathishkumar, Kanthasamy Deivam., j mater res technol . 3(3)(2014)222–227.

DOI: 10.1016/j.jmrt.2014.04.001

[17] S. Rahima, M. Sasani Ghamsaria, S. Radima., SciIran. 19(2012)948–53.

[18] G. Zou, H. Li, D. Zhang, K. Xiong, C. Dong, Y. Qian., J. Phys. Chem. B 110 (2006) 1632–1637.

[19] M. Heinlaan, A. Ivask, I. Blinova, H.C. Dubourguier, A. Kakru., Chemosphere 71(2008) 1308–1316.

Show More Hide