We have employed a quantum confinement (QC) model to the study of different shapes of nanocrystalline silicon (nc-Si) quantum dot. Each dots (shapes), although within the limits of an effective diameter of 3nm, exhibits divergence leading to different electronic energy based on the transitions from the quantum selection rule. Also, the graphical representation of the energies from each shape as a function of the effective diameter gives a qualitatively similar spectrum of discrete energies. The results obtained in this work using QC model are in good agreement with experiment and other models in literature.

Periodical:

International Letters of Chemistry, Physics and Astronomy (Volume 63)

Pages:

106-110

DOI:

10.18052/www.scipress.com/ILCPA.63.106

Citation:

S. A. Ekong and M. O. Osiele, "A Quantum Confinement Study of the Electronic Energy of some Nanocrystalline Silicon Quantum-Dots", International Letters of Chemistry, Physics and Astronomy, Vol. 63, pp. 106-110, 2016

Online since:

Jan 2016

Authors:

Keywords:

Distribution:

Open Access

This work is licensed under a

Creative Commons Attribution 4.0 International License

References:

[1] Mmadi, A., I. Zorkani, K. Rahmani and A. Jorio, (2013), Magnetic field effect on the diamagnetic susceptibility of hydrogenic donor in cylindrical quantum dot, The African Review of Physics, 8: 0033, p.219.

[2] Räsänen, E., H. Saarikoski, V. N. Stavrou, A. Harju, M. J. Puska, and R. M. Nieminen, (2008): Electronic structure of rectangular quantum dots, p.1. [Unpublished].

DOI: 10.1103/physrevb.67.235307[3] Chih-Hsien Cheng, Yu-Chung Lien, Chung-Lun Wu, and Gong-Ru Lin, (2013): Multicolor electroluminescent Si quantum dots embedded in SiOX thin film MOSLED with 2. 4% external quantum efficiency, Optics Express, Vol. 21, Issue 1, pp.391-403.

DOI: 10.1364/oe.21.000391[4] Ilya Sychugov, (2006): Synthesis properties of single luminescent silicon quantum dots, Royal Institute of Technology, Doctoral Thesis, Stockholm, Sweden, pp.4-13, 32.

[5] Florian Maier-Flaig, Julia Rinck, Moritz Stephan, Tobias Bocksrocker, Michael Bruns, Christian Kübel, Annie K. Powell, Geoffrey A. Ozin and Uli Lemmer, (2013).

DOI: 10.1021/nl3038689[6] Chemical & Engineering News, (2013): LEDs Made From Silicon Quantum Dots Shine in New Colors, Volume 91, Issue 5, p.8.

[7] Ali M. Mousa, and Karem H. Jawad, (2015), Performance of a Nano PbS/Si Hetrojunction Deposited by chemical spray pyrolysis, International Letters of Chemistry, Physics and Astronomy Vol. 51, pp.13-16.

DOI: 10.18052/www.scipress.com/ilcpa.51.13[8] Yang C. H., Rossi A., Ruskov R., Lai N. S., Mohiyaddin F. A., Lee S., Tahan C., Klimeck G., Morello A., and Dzurak A. S., (2013).

[9] Ciurea M. L. and Iancu V., (2007).

[10] Ioannou-Sougleridis V., Ouisse T., Nassiopoulou A. G., Bassani F. and Arnaud d'Avitaya F., (2001): Nonlinear electrical transport in nc-Si/CaF2 multilayer structures with ultrathin CaF2 layers, Journal of Applied Physics, Vol. 89, No 1, p.610.

DOI: 10.1063/1.1330551[11] Iancu V., Stavarache I., and Ciurea M. L., (2006): Quantum confinement Modeling of Electrical and Optical Processes in nanocrystalline silicon, Journal of Optoelectronics and Advanced Materials Vol. 8, No 6, pp.2156-2157.

[12] Ciurea M. L., (2005): Quantum confinement in nanocrystalline silicon, Journal of Optoelectronics and Advanced Materials Vol. 7, No 5, p.2341, 2342 and 2344.

[13] Delerue C., Allan G., and Lannoo M., (1993): Phys. Rev. B 48, p.11024.

[14] Heitmann J., Müller F., Yi L. X., Zacharias M., Kovalev D. and Eichhorn F., (2004), Phys. Rev. B 69, p.195309.

[15] Villamila, P., C. Cabraa and N. P. Montenegro, (2005), Microelectronics J. 36, p.383.

[16] Abramovitz M and Stegun I. A, (1972).

[17] Legoff, S. and B. Stébé, (1992), J. Phys. B 25, p.5261.

[18] Hu, G. Y., R. F. O'Connell, Y. L. He, and M. B. Yu, (1995), J. Appl. Phys. 78, p.3945.

[19] Poole Jr. C. P. and Owens F. A., (2003): Introduction to Nanotechnology, John Wiley and Sons, Inc. [ISBN 0-471-07935-9], p.226, 231-234.