Paper Titles in Periodical
International Letters of Chemistry, Physics and Astronomy
Volume 61
Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 61 > The Prevalence and Significance of ~10-20 J and...
< Back to Volume

The Prevalence and Significance of ~10-20 J and ~10-12 W·m-2 as Convergent/Divergent Nodal Units in the Universe

Full Text PDF

Abstract:

The dimensional analysis that produces the quantitative equivalence between two aggregate terms that have universal prevalence may reveal hidden variables. The value of 10-20 J per s can be derived from the total force of the universe when divided by the total numbers of Planck’s voxels and distributed over the distance of the hydrogen wavelength. The radiant flux density of 10-12 W·m-2 for photons is ubiquitous throughout cellular systems, including those associated with cognition, and background environment measurements. The most parsimonious relation is that the radiant flux density of photons (a divergent phenomenon) is equal to the fundamental energy from the entire force of the universe at the level of Planck’s volume and the energy converging within the electrical (wave impedance) and magnetic (permeability) properties of space with every rotation of an electron. This quantitative relationship suggests there is equilibrium between the divergence of radiative phenomena and the convergence within the electrical and magnetic properties of space with each orbital rotation of an electron. The exactness of this equivalence may reveal the source and mechanisms by which the energies associated with chemical bonds, resting plasma membrane potentials and “entanglement” for rest mass photons could result in radiant flux densities of photonic fields

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 61)
Pages:
94-100
Citation:
M. A. Persinger, "The Prevalence and Significance of ~10-20 J and ~10-12 W·m-2 as Convergent/Divergent Nodal Units in the Universe", International Letters of Chemistry, Physics and Astronomy, Vol. 61, pp. 94-100, 2015
Online since:
November 2015
Export:
Distribution:
References:

[1] M. A. Persinger, Perceptual and Motor Skills 88 (1999) 1210-1216.

[2] H. E. Puthoff, Physical Review A 39 (1989) 2333-2342.

[3] M. A. Persinger, Entropy 17 (2015) 6200-6212.

[4] L. M. Karbowski, M. A. Persinger International Letters of Chemistry, Physics and Astronomy 4 (2015) 1-9.

[5] T. E. DeCoursey, Physiological Reviews 83 (2003) 475-579.

[6] M. A. Persinger, Current Medicinal Chemistry 17 (2010) 3094-3098.

[7] B. T. Dotta, C. A. Buckner, D. Cameron, R. F. Lafrenie, M. A. Persinger, General Physiology and Biophysics 30 (2011) 301-309.

[8] L. Y. Wei, Bulletin of Mathematical Biophysics 31 (1969) 39-58.

[9] M. A. Persinger, The Open Astronomy Journal 5 (2012) 41-43.

[10] M. A. Persinger, K. S. Saroka, International Letters of Chemistry, Physics and Astronomy 3 (2015) 106-112.

[11] A. S. Goldhaber, N. M. Nieto, Physics Reviews D 9 (1974) 1119-1121.

[12] L-C. Tu, J. Luo, G. T. Gilles, Reports on Progress in Physics 68 (2005) 77-130.

[13] M. A. Persinger, B. T. Dotta, L. M. Karbowski, N. J. Murugan, FEBS Open Bio 5 (2015) 413-418.

[14] D. A. E. Vares, M. A. Persinger, Journal of Non-Locality 2 (2013) no. 2.

[15] M. A. Persinger, International Letters of Chemistry, Physics and Astronomy 8 (2013) 8-19.

[16] R. J. Adler, B. Casey, O. C. Jacob, American Journal of Physics 63 (1995) 620-626.

[17] N. Rouleau, B. T. Dotta, Frontiers in Integrative Neurosciences 8 (2014) Vol. 8.

[18] B. Pakkenberger, H. J. G. Gundersen, The Journal of Comparative Neurology 384 (1997) 312-320.

[19] B. T. Dotta, C. A. Buckner, R. M. Lafrenie, M. A. Persinger, Brain Research 388 (2011) 77-88.

[20] B. T. Dotta, K. S. Saroka, M A. Persinger, Neuroscience Letters 513 (2012) 151-154.

[21] Y. Isojima, T. Isoshima, K. Nagai, K. Kikcuchi, N. Nagagawa, NeuroReport 6 (1995) 658-660.

[22] M. Kobayashi, M. Takeda, T. Sato, Y. Yamazaki, K. Kaneko, K. -l. Ito, H. Kato, H. Inaba, Neuroscience Research 34 (1999) 103-1113.

[23] J. R. Whitlock, A. J. Heynen, M. G. Schuler, M. F. Bear, Science, 313 (2006) 1093-1097.

[24] M. A. Persinger, S. A. Koren, International Journal of Neuroscience 117 (2007) 417-420.

[25] B. T. Dotta, N. J. Murugan, L. M. Karbowski, R. M. Lafrenie, M. A. Persinger, Naturwissenschaften 101 (2014) 87-94.

[26] A. A. Gurwitsch, Experientia 44 (1988) 545-549.

[27] M. A. Persinger, Journal of Physics, Astrophysics and Physical Cosmology 3 (2009) 1-3.

[28] B. M. Vladimirsky, A.V. Bruns, Biophysics 43 (1998) 720-725.

[29] T. Quinn, H. Parks, C. Speake, R. Davis, Physics Review Letters 111 (2013) 101102.

[30] M. A. Persinger, L. S. St-Pierre, International Journal of Geosciences 5 (2014) 450-452.

[31] M. A. Persinger, K. S. Saroka, International Letters of Chemistry, Physics and Astronomy 19 (2014) 181-190.

[32] R. C. Burke, M. A. Persinger, NeuroQuantology 11 (2013) 1-7.

Show More Hide
Cited By:

[1] N. Rouleau, M. Persinger, "Spatial-Temporal Quantitative Global Energy Differences between the Living and Dead Human Brain", Journal of Behavioral and Brain Science, Vol. 06, p. 475, 2016

DOI: https://doi.org/10.4236/jbbs.2016.612043