Paper Titles in Periodical
International Letters of Chemistry, Physics and Astronomy
Volume 61


Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 61 > A New Study to the Schrödinger Equation for...
< Back to Volume

A New Study to the Schrödinger Equation for Modified Potential V(r)=ar2+br-4+cr-6 in Nonrelativistic Three Dimensional Real Spaces and Phases

Full Text PDF


In present work, by applying Boopp’s shift method and standard perturbation theory we have generated exact nonrelativistic bound states solution for a modified potential (see formula in paper) in both three dimensional noncommutative space and phase (NC: 3D-RSP) at first order of two two infinitesimal parameters antisymmetric (see formula in paper), we have also derived the corresponding noncommutative Hamiltonian.


International Letters of Chemistry, Physics and Astronomy (Volume 61)
A. Maireche "A New Study to the Schrödinger Equation for Modified Potential V(r)=ar2+br-4+cr-6 in Nonrelativistic Three Dimensional Real Spaces and Phases", International Letters of Chemistry, Physics and Astronomy, Vol. 61, pp. 38-48, 2015
Online since:
Nov 2015

[1] M.S. Child, S. -H. Dong, and X. -G. Wang, Quantum states of a sextic potential: hidden symmetry and quantum monodromy,, Journal of Physics A. vol. 33, no. 32, (2000) p.5653– 5661.

DOI: 10.1088/0305-4470/33/32/303

[2] S. K. Bose, Exact bound states for the central fraction power singular potential V(r)=αr2/3+βr−2/3+γr−4/3, IL NUOVO CIMENTO). 109, (1994) 1217.

[3] L. Buragohain1 , S.A.S. Ahmed, Exactly solvable quantum mechanical systems generated from the anharmonic potentials, Lat. Am. J. Phys. Educ. Vol. 4, No. 1 ( 2010).

[4] Raushal, S. A. S.A. Ahmed, Borah, B. C. and Sarma, D., Generation of exact bound state solutions From solvable non-power law potentials by a transformations method, Eur. Phys. J. D17 (1992) 335-338.

[5] Sameer M. Ikhdair1 and Ramazan Sever, Exact solutions of the radial Schrödinger equation for some physical potentials, CEJP. 5(4) (2007) 516– 527.

DOI: 10.2478/s11534-007-0022-9

[6] M.M. Nieto: Hydrogen atom and relativistic pi-mesic atom in N-space dimension, Am. J. Phys. Vol. 47 (1979), p.1067–1072.

DOI: 10.1119/1.11976

[7] S.M. Ikhdair and R. Sever, Exact polynomial eigensolutions of the Schr¨odinger equation for the pseudoharmonic potential, J. Mol. Struc. -Theochem. Vol. 806, (2007), p.155–158.

DOI: 10.1016/j.theochem.2006.11.019

[8] Ahmed, A. S. and Buragohain, L., Generation of new classes of exactly solvable potentials, Phys. Scr. 80. (2009) 1-6.

DOI: 10.1088/0031-8949/80/02/025004

[9] Bose, S. K., Exact solution of non-relativistic Schrödinger equation for certain central physical potentials, Nouvo Cimento B. 113 (1996) 299- 328.

[10] Flesses, G. P. and Watt, A., An exact solution of the Schrödinger equation for a multiterm potential, J. Phys. A: Math. Gen. 14, (19981) L315-L318.

DOI: 10.1088/0305-4470/14/9/001

[11] M. Ikhdair and R. Sever: Exact solution of the Klein–Gordon equation for the PT symmetri generalized Woods–Saxon potential by the Nikiforov–Uvarov method, Ann. Phys. (Leipzig), Vol. 16, (2007), p.218–232.

DOI: 10.1002/andp.200610232

[12] S. -H. Dong, "Schrodinger equation with the potential V(r) = r*−4 + r*−3 + r*−2 +r*−1, Physica Scripta. Vol. 64, no. 4 (2001) p.273–276.

[13] S. -H. Dong and Z. -Q. Ma, Exact solutions to the Schrodinger ¨ equation for the potential V(r) = r*2 + r*−4 + r*−6 in two dimensions, , Journal of Physics A. Vol. 31, no. 49 (1998) p.9855–9859.

[14] S. -H. Dong, A new approach to the relativistic Schrödinger ¨ equation with central potential: Ansatz method, , International Journal of Theoretical Physics. Vol. 40, no. 2 (2001) p.559–567.

[15] Ali Akder et al., A new Coloumb ring-shaped potential via generalized parametetric Nikivforov-Uvarov method, Journal of Theoretical and Applied Physics. 7( 2013) 17.

[16] Sameer M. Ikhdair and Ramazan Sever, Relativistic Two-Dimensional Harmonic Oscillator Plus Cornell Potentials in External Magnetic and AB Fields, Advances in High Energy Physics. Volume 2013, Article ID 562959, 11 pages.

DOI: 10.1155/2013/562959

[17] Shi-Hai Dong, Guo-Hua San, Quantum Spectrum of Some Anharmonic Central Potentials: Wave Functions Ansatz, Foundations of Physics Letters.  16, Issue 4 (2003) pp.357-367.

DOI: 10.1023/a:1025313809478

[18] L. Buragohain1, S.A.S. Ahmed, Exactly solvable quantum mechanical systems generated from the anharmonic potentials, Lat. Am. J. Phys. Educ. Vol. 4, No. 1 (2010) 79-83.

[19] S. M. Ikhdair, Exact solution of Dirac equation with charged harmonic oscillator in electric field: bound states, , Journal of Modern Physics. vol. 3, no. 2 (2012) p.170–179.

DOI: 10.4236/jmp.2012.32023

[20] H. Hassanabadi et al., Exact solution Dirac equation for an energy-depended potential, Tur. Phys. J. Plus. 127 (2012) 120.

[21] H. Hassanabadi, M. Hamzavi, S. Zarrinkamar and A. A. Rajabi, Exact solutions of N- Dimensional Schrödinger equation for a potential containing coulomb and quadratic terms, International Journl of the Physical Sciences, Vol. 6(3), pp.583-586, (2011).

[22] Shi-Hai Dong, Zhoung-Qi Ma, and Giampieero Esposito, Exact solutions of the Schrödinger equation with inverse-power potential, Fondations of Physics Letters. Vol, 12, N, 5, (1999).

[23] Shi-Hai Dong, Xi Wen Hou and Zhoung-Qi Ma, Schrödinger equation with Potential , arXiv: quanta-ph/9808037 v1 21 Aug (1998).

[24] A. Connes., Noncommutative geometry, 1sted. (Academic Press, Paris, France, 1994).

[25] H. Snyder, The Quantization of space time, Phys. Rev. 71 (1946) 38-41.

[25] Anselme F. Dossa, Gabriel Y. H. Avossevou, Noncommutative Phase Space and the Two Dimensional Quantum Dipole in Background Electric and Magnetic Fields, Journal of Modern Physics. 4 (2013) 1400-1411.

DOI: 10.4236/jmp.2013.410168

[26] D. T. Jacobus. PhD, Department of Physics, Stellenbosch University, South Africa, (2010).

[27] Anais Smailagic et al. New isotropic versus anisotropic phase of noncommutative 2-D Harmonic oscillator, Phys. Rev. D65 (2002) 107701.

[28] Yang, Zu-Hua et al., DKP Oscillator with spin-0 in Three dimensional Noncommutaive Phase-Space, Int. J. Theor. Phys. 49 (2010) 644-657.

[29] Y. Yuan e al. Spin ½ relativistic particle in a magnetic field in NC Ph, Chinese Physics C, 34(5) (2010) 543.

[30] Behrouz Mirza et al., Relativistic Oscillators in a Noncommutative space in a Magnetic field, Commun. Theor. Phys. 55 (2011) 405-409.

DOI: 10.1088/0253-6102/55/3/06

[31] Abdelmadjid Maireche, Quantum Schrödinger Equation with Octic Potential in Non Commutative Two-Dimensional Complex space, Life Sci. J. 11(6) (2014) 353-359.

[32] Abdelmadjid Maireche, Spectrum of Schrödinger Equation with H.L.C. Potential in Non-Commutative Two-dimensional Real Space, The African Rev. Phys. 9: 0060 (2014) 479-483.

[33] Abdelmadjid Maireche, Deformed Quantum Energy Spectra with Mixed Harmonic Potential or Nonrelativistic Schrödinger equation, J. Nano- Electron. Phys. 7 No 2, (2015) 02003.

[34] Abdelmadjid Maireche, A Study of Schrödinger Equation with Inverse Sextic Potential in 2- dimensional Non-commutative Space, The African Rev. Phys. 9: 0025 (2014) 185-193.

[35] Abdelmadjid Maireche Deformed Bound States for Central Fraction Power Potential: Non Relativistic Schrödinger Equation, the African Rev. Phys. 10: 0014 (2015) 97-103.

[36] Abdelmadjid Maireche, Nonrelativistic Atomic Spectrum for Companied Harmonic Oscillator Potential and its Inverse in both NC-2D: RSP, International Letters of Chemistry, Physics and Astronomy. Vol. 56 (2015) pp.1-9.

DOI: 10.18052/

[37] Abdelmadjid Maireche A New Approach to the Non Relativistic Schrödinger equation for an Energy-Depended Potential in Both Noncommutative three Dimensional spaces and phases , International Letters of Chemistry, Physics and Astronomy. Vol. 60 (2015).

DOI: 10.18052/

[38] Abdelmadjid Maireche, Spectrum of Hydrogen Atom Ground State Counting Quadratic Term in Schrödinger Equation, The African Rev. Phys. 10: 0025 (2015) 177-183.

[39] Abdelmadjid Maireche New Exact Solution of the Bound States for the Potential Family V(r)=A/r2-B/r+Crk (k=0, -1, -2) in both Noncommutative Three Dimensional Spaces and Phases: Non Relativistic Quantum Mechanics, International Letters of Chemistry, Physics and Astronomy. Vol. 58 (2015).

DOI: 10.18052/

[40] Abdelmadjid Maireche, New exact bound states solutions for (C.F.P.S. ) potential in the case of Non commutative three dimensional non relativistic quantum mechanics, Med. J. Model. Simul. 04 (2015) 60-072.

[41] Abdelmadjid Maireche, Spectrum of Schrödinger Equation with H.L.C. Potential in Non- commutative Two-dimensional Real Space, The African Rev. Phys. 9: 0025 (2014) 479-485.

[42] A.E.F. Djemei and H. Smail, On Quantum Mechanics on Noncommutative Quantum Phase Space, Commun. Theor. Phys. (Beijinig, China). 41 (2004) pp.837-844.

DOI: 10.1088/0253-6102/41/6/837

[43] Shaohong Cai, Tao Jing, Guangjie Guo, Rukun Zhang, Dirac Oscillator in Noncommutative Phase Space, International Journal of Theoretical Physics. 49( 8) (2010) pp.1699-1705.

DOI: 10.1007/s10773-010-0349-7

[44] Joohan Lee, Star Products and the Landau Problem, Journal of the Korean Physical Society, Vol. 47, No. 4, Oc (2005) pp.571-576.

[45] A. Jahan, Noncommutative harmonic oscillator at finite temperature: a path integral approach, Brazilian Journal of Physics, vol. 37, no. 4( 2007) 144-146.

DOI: 10.1590/s0103-97332008000100026

[46] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, (7th. ed.; Elsevier, 2007).

Show More Hide