This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] M.S. Child, S. -H. Dong, and X. -G. Wang, Quantum states of a sextic potential: hidden symmetry and quantum monodromy,, Journal of Physics A. vol. 33, no. 32, (2000) p.5653– 5661.
DOI: https://doi.org/10.1088/0305-4470/33/32/303[2] S. K. Bose, Exact bound states for the central fraction power singular potential V(r)=αr2/3+βr−2/3+γr−4/3, IL NUOVO CIMENTO). 109, (1994) 1217.
[3] L. Buragohain1 , S.A.S. Ahmed, Exactly solvable quantum mechanical systems generated from the anharmonic potentials, Lat. Am. J. Phys. Educ. Vol. 4, No. 1 ( 2010).
[4] Raushal, S. A. S.A. Ahmed, Borah, B. C. and Sarma, D., Generation of exact bound state solutions From solvable non-power law potentials by a transformations method, Eur. Phys. J. D17 (1992) 335-338.
[5] Sameer M. Ikhdair1 and Ramazan Sever, Exact solutions of the radial Schrödinger equation for some physical potentials, CEJP. 5(4) (2007) 516– 527.
DOI: https://doi.org/10.2478/s11534-007-0022-9[6] M.M. Nieto: Hydrogen atom and relativistic pi-mesic atom in N-space dimension, Am. J. Phys. Vol. 47 (1979), p.1067–1072.
DOI: https://doi.org/10.1119/1.11976[7] S.M. Ikhdair and R. Sever, Exact polynomial eigensolutions of the Schr¨odinger equation for the pseudoharmonic potential, J. Mol. Struc. -Theochem. Vol. 806, (2007), p.155–158.
DOI: https://doi.org/10.1016/j.theochem.2006.11.019[8] Ahmed, A. S. and Buragohain, L., Generation of new classes of exactly solvable potentials, Phys. Scr. 80. (2009) 1-6.
DOI: https://doi.org/10.1088/0031-8949/80/02/025004[9] Bose, S. K., Exact solution of non-relativistic Schrödinger equation for certain central physical potentials, Nouvo Cimento B. 113 (1996) 299- 328.
[10] Flesses, G. P. and Watt, A., An exact solution of the Schrödinger equation for a multiterm potential, J. Phys. A: Math. Gen. 14, (19981) L315-L318.
DOI: https://doi.org/10.1088/0305-4470/14/9/001[11] M. Ikhdair and R. Sever: Exact solution of the Klein–Gordon equation for the PT symmetri generalized Woods–Saxon potential by the Nikiforov–Uvarov method, Ann. Phys. (Leipzig), Vol. 16, (2007), p.218–232.
DOI: https://doi.org/10.1002/andp.200610232[12] S. -H. Dong, "Schrodinger equation with the potential V(r) = r*−4 + r*−3 + r*−2 +r*−1, Physica Scripta. Vol. 64, no. 4 (2001) p.273–276.
[13] S. -H. Dong and Z. -Q. Ma, Exact solutions to the Schrodinger ¨ equation for the potential V(r) = r*2 + r*−4 + r*−6 in two dimensions, , Journal of Physics A. Vol. 31, no. 49 (1998) p.9855–9859.
[14] S. -H. Dong, A new approach to the relativistic Schrödinger ¨ equation with central potential: Ansatz method, , International Journal of Theoretical Physics. Vol. 40, no. 2 (2001) p.559–567.
[15] Ali Akder et al., A new Coloumb ring-shaped potential via generalized parametetric Nikivforov-Uvarov method, Journal of Theoretical and Applied Physics. 7( 2013) 17.
[16] Sameer M. Ikhdair and Ramazan Sever, Relativistic Two-Dimensional Harmonic Oscillator Plus Cornell Potentials in External Magnetic and AB Fields, Advances in High Energy Physics. Volume 2013, Article ID 562959, 11 pages.
DOI: https://doi.org/10.1155/2013/562959[17] Shi-Hai Dong, Guo-Hua San, Quantum Spectrum of Some Anharmonic Central Potentials: Wave Functions Ansatz, Foundations of Physics Letters. 16, Issue 4 (2003) pp.357-367.
DOI: https://doi.org/10.1023/a:1025313809478[18] L. Buragohain1, S.A.S. Ahmed, Exactly solvable quantum mechanical systems generated from the anharmonic potentials, Lat. Am. J. Phys. Educ. Vol. 4, No. 1 (2010) 79-83.
[19] S. M. Ikhdair, Exact solution of Dirac equation with charged harmonic oscillator in electric field: bound states, , Journal of Modern Physics. vol. 3, no. 2 (2012) p.170–179.
DOI: https://doi.org/10.4236/jmp.2012.32023[20] H. Hassanabadi et al., Exact solution Dirac equation for an energy-depended potential, Tur. Phys. J. Plus. 127 (2012) 120.
[21] H. Hassanabadi, M. Hamzavi, S. Zarrinkamar and A. A. Rajabi, Exact solutions of N- Dimensional Schrödinger equation for a potential containing coulomb and quadratic terms, International Journl of the Physical Sciences, Vol. 6(3), pp.583-586, (2011).
[22] Shi-Hai Dong, Zhoung-Qi Ma, and Giampieero Esposito, Exact solutions of the Schrödinger equation with inverse-power potential, Fondations of Physics Letters. Vol, 12, N, 5, (1999).
[23] Shi-Hai Dong, Xi Wen Hou and Zhoung-Qi Ma, Schrödinger equation with Potential , arXiv: quanta-ph/9808037 v1 21 Aug (1998).
[24] A. Connes., Noncommutative geometry, 1sted. (Academic Press, Paris, France, 1994).
[25] H. Snyder, The Quantization of space time, Phys. Rev. 71 (1946) 38-41.
[25] Anselme F. Dossa, Gabriel Y. H. Avossevou, Noncommutative Phase Space and the Two Dimensional Quantum Dipole in Background Electric and Magnetic Fields, Journal of Modern Physics. 4 (2013) 1400-1411.
DOI: https://doi.org/10.4236/jmp.2013.410168[26] D. T. Jacobus. PhD, Department of Physics, Stellenbosch University, South Africa, (2010).
[27] Anais Smailagic et al. New isotropic versus anisotropic phase of noncommutative 2-D Harmonic oscillator, Phys. Rev. D65 (2002) 107701.
[28] Yang, Zu-Hua et al., DKP Oscillator with spin-0 in Three dimensional Noncommutaive Phase-Space, Int. J. Theor. Phys. 49 (2010) 644-657.
[29] Y. Yuan e al. Spin ½ relativistic particle in a magnetic field in NC Ph, Chinese Physics C, 34(5) (2010) 543.
[30] Behrouz Mirza et al., Relativistic Oscillators in a Noncommutative space in a Magnetic field, Commun. Theor. Phys. 55 (2011) 405-409.
DOI: https://doi.org/10.1088/0253-6102/55/3/06[31] Abdelmadjid Maireche, Quantum Schrödinger Equation with Octic Potential in Non Commutative Two-Dimensional Complex space, Life Sci. J. 11(6) (2014) 353-359.
[32] Abdelmadjid Maireche, Spectrum of Schrödinger Equation with H.L.C. Potential in Non-Commutative Two-dimensional Real Space, The African Rev. Phys. 9: 0060 (2014) 479-483.
[33] Abdelmadjid Maireche, Deformed Quantum Energy Spectra with Mixed Harmonic Potential or Nonrelativistic Schrödinger equation, J. Nano- Electron. Phys. 7 No 2, (2015) 02003.
[34] Abdelmadjid Maireche, A Study of Schrödinger Equation with Inverse Sextic Potential in 2- dimensional Non-commutative Space, The African Rev. Phys. 9: 0025 (2014) 185-193.
[35] Abdelmadjid Maireche Deformed Bound States for Central Fraction Power Potential: Non Relativistic Schrödinger Equation, the African Rev. Phys. 10: 0014 (2015) 97-103.
[36] Abdelmadjid Maireche, Nonrelativistic Atomic Spectrum for Companied Harmonic Oscillator Potential and its Inverse in both NC-2D: RSP, International Letters of Chemistry, Physics and Astronomy. Vol. 56 (2015) pp.1-9.
DOI: https://doi.org/10.18052/www.scipress.com/ilcpa.56.1[37] Abdelmadjid Maireche A New Approach to the Non Relativistic Schrödinger equation for an Energy-Depended Potential in Both Noncommutative three Dimensional spaces and phases , International Letters of Chemistry, Physics and Astronomy. Vol. 60 (2015).
DOI: https://doi.org/10.18052/www.scipress.com/ilcpa.60.11[38] Abdelmadjid Maireche, Spectrum of Hydrogen Atom Ground State Counting Quadratic Term in Schrödinger Equation, The African Rev. Phys. 10: 0025 (2015) 177-183.
[39] Abdelmadjid Maireche New Exact Solution of the Bound States for the Potential Family V(r)=A/r2-B/r+Crk (k=0, -1, -2) in both Noncommutative Three Dimensional Spaces and Phases: Non Relativistic Quantum Mechanics, International Letters of Chemistry, Physics and Astronomy. Vol. 58 (2015).
DOI: https://doi.org/10.18052/www.scipress.com/ilcpa.58.164[40] Abdelmadjid Maireche, New exact bound states solutions for (C.F.P.S. ) potential in the case of Non commutative three dimensional non relativistic quantum mechanics, Med. J. Model. Simul. 04 (2015) 60-072.
[41] Abdelmadjid Maireche, Spectrum of Schrödinger Equation with H.L.C. Potential in Non- commutative Two-dimensional Real Space, The African Rev. Phys. 9: 0025 (2014) 479-485.
[42] A.E.F. Djemei and H. Smail, On Quantum Mechanics on Noncommutative Quantum Phase Space, Commun. Theor. Phys. (Beijinig, China). 41 (2004) pp.837-844.
DOI: https://doi.org/10.1088/0253-6102/41/6/837[43] Shaohong Cai, Tao Jing, Guangjie Guo, Rukun Zhang, Dirac Oscillator in Noncommutative Phase Space, International Journal of Theoretical Physics. 49( 8) (2010) pp.1699-1705.
DOI: https://doi.org/10.1007/s10773-010-0349-7[44] Joohan Lee, Star Products and the Landau Problem, Journal of the Korean Physical Society, Vol. 47, No. 4, Oc (2005) pp.571-576.
[45] A. Jahan, Noncommutative harmonic oscillator at finite temperature: a path integral approach, Brazilian Journal of Physics, vol. 37, no. 4( 2007) 144-146.
DOI: https://doi.org/10.1590/s0103-97332008000100026[46] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, (7th. ed.; Elsevier, 2007).