Paper Titles in Periodical
International Letters of Chemistry, Physics and Astronomy
Volume 61


Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 61 > Study of the Effect of Chalconyl Central Bridge on...
< Back to Volume

Study of the Effect of Chalconyl Central Bridge on Mesomorphism

Full Text PDF


A novel homologous series of chalconyl ester derivatives of thermotropic type of liquid crystals (LC) variety have been synthesized with its general molecular formula RO-C6H4-CH=CH-COO-C6H4-CO-CH=CH-C6H4-N(CH3)2 (Para). Present investigation is planned with a view to understand and establish the relation between molecular structure and the mesomorphic behaviorur of the constituent homologue derivatives as well as to avail novel mesomorphic (LC) substances to the researcher working on multidisciplinary thermotropic LC material with different aims, objects and views at different angles. Novel homologous series consists of twelve homologues C1 to C5 homologues are nonliquid crystals (NLC) and the rest of the C6 to C16 are monotropically nematogenic liquid crystals. Transition temperatures and texture of the LC and NLC were determined by an optical polarizing microscopy equipped with heating stage (POM). Textures of nematic phase are threaded or schlieren. Analytical and spectral data confirms the molecular structures of homologues. Thermal stability for monotropy is very low of the magnitudes of few second and of negligible degree of temperature difference. Thermal properties of present novel series are compared with of structurally similar series, data interpreted in terms of molecular rigidity and flexibility to derive group efficiency order.


International Letters of Chemistry, Physics and Astronomy (Volume 61)
P.K. Rakhasia et al., "Study of the Effect of Chalconyl Central Bridge on Mesomorphism", International Letters of Chemistry, Physics and Astronomy, Vol. 61, pp. 19-27, 2015
Online since:
Nov 2015

[1] Gray, G. W., & Windsor, P. A. (1974). Liq. Cryst. and Plastic Cryst., The role of liquid crystals in life processes by Stewart G.T., 1, 308-326.

[2] Jain, U.K., Bhatiya, R.K., Rao, A.R., Singh, R., Saxena, A.K. & Seha, I. (2014). Tropical Journal of Pharmaceutical Research, 13(1), 73-80.

[3] Talwa, I., Dr. Salnana Shahi, Ramteke,V. & Syed, I. (2012). Liquid crystal Pharmaceutical Application: A Review", "IJPRAS, International journal of Pharmaceutical Research and Allied Science, 1(2), 06-11.

[4] Calliste, C.A., Bail, J.C., Trouilas, P., Pouget, C., Chulia A.J. & Duroux, L.J. (2001). Anticancer Res., 21, 3949-3956.

[5] Lee, Y.S., Lim, S.S., Shin, K.H., Kim, Y.S., Ohuchi, K. & Jung, S.H. (2006). Bio. Pharm. Bull, 29, 1028-1031.

[6] F. Reintizer, Monatsh 9, 421 (1888).

[7] Imrie, C. T. (1999). Liq. Crystal Dimers. Struct. Bond, 95, 149-192.

[8] Gray, G. W., & Windsor, P.A. (1974). Liq. Cryst. Plastic Cryst., Ellis Horwood: Chichester, U.K., 1 (4), 103-153.

[9] Gray, G. W. (1962). Molecular Structure and the Properties of Liquid Crystal. Academic Press: London.

[10] Henderson, P.A., Niemeyer, O., & Imrie, C.T. (2001). Liq. Cryst., 28, 463-472.

[11] Demus, D., Goodby, J., Gray, G. W., Spiess, H. W. and V. Vill. Eds. V., (1998). Wiley-VCH. Weinheim pp.801-833.

[12] Collings. P.J. and Hird M. (1997) Introduction to liquid Crystal chemistry and physics, Taylor and Fransis, New york.

[13] Marcos. M, Omenat. A, Serrano. J. L and Ezcurra. A (1992), Adv . Matter, 4, 285.

[14] Hird. M, Toyne. K. J, Gray G.W., Day S.E. (1993) Liq. Cryst. 14, 741.

[15] Hird. M, Toyne. K. J, and Gray. G. W, Day S. E and Mc. Donell D. G (1993), Liq. Cryst. 15, 123.

[16] Demls, D., (1988). 100 years of Liquid Crystal Chemistry, Mol. Cryst. Liq. Cry., 165, 45-84.

[17] Demls, D., (1989). Plenary lectures 100 years of Liquid Crystal Chemistry, Thermotropic liquid crystals with conventional and unconventional molecular structure, Liq. Cry., 5, 75-110.

DOI: 10.1080/02678298908026353

[18] (i) Suthar, D.M. & Doshi, A.V. (2013).

[19] Patel, B. H. & Doshi, A. V. (2015). Novel cinnamate Esters – Synthesis and Mesomorphic Properties in Relation to Molecular Structure Mol. Cryst. Liq. Cryst., 605, 42-51.

DOI: 10.1080/15421406.2014.884392

[20] Rola, R.R., Bhola, G.N., & Bhoya, U.C. (2015). International Letters of Chemistry, Physics and Astronomy, 8(1), 67-76.

[21] Patel B. H. & Doshi A. V. (2015). Mol. Cryst. Liq. Cryst., 608, 38-46.

[22] Aurangzeb, H., Asghar A. & Muhammed, N. A. (2011). Molecules, 16, 7789-7802.

[23] Dave, J. S., &Vora, R. A., (1970). Liquid Crystal and Ordered Fluids, Plenum Press: New York, 477.

[24] Patel, R. B., Patel, V. R., & Doshi, A. V. (2012). Mol. Cryst. Liq. Cryst., 552, 3-9.

[25] (a) Greene, T. W. & Wuts, P. G. M. (1991). Protective Groups in Organic Synthesis, 2nd Ed.; John Wiley and Sons: New York. (b) Kocienski, P. J. Protecting Groups; GeorgThieme: Stuttgart, (1994).

[26] Doshi, A. V., & Lohar, J. M. (1993), Ind. Acad. Sci. Chem. Science, 105(3), 209-214.

[27] Ganatra K. J., & Doshi, A. V. (2000). J. of indian Chem. Soc., 77, 322-325.

[28] Travadi, J. J., Bhoya, U. C., & Doshi, A. V. (2012). Determination of Transition Temperatures of Non-mesomorphism by extrapolation method in Binary Systems, Mol. Cryst. Liq. Cry., 552, 10-15.

[29] Bhoya, U. C., Vyas, N. N., & Doshi, A. V. (2012). Mol. Cryst. Liq. Cryst., 552, 104-110.

[30] Bhola, G.N. & Bhoya, U.C., Manuscript of a research paper entitled Mesomorphism Dependence on Central Bridges and EquiGroup Efficiency Order of Tail End, accepted for publication to Mol. Cryst. Liq. Cryst. Journal (Taylor and Fransis) LCMH336, dated 27-07-(2015).

Show More Hide