Paper Titles in Periodical
International Letters of Chemistry, Physics and Astronomy
ILCPA Volume 61

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > ILCPA Volume 61 > Structural and Vibrational Analysis of...
< Back to Volume

Structural and Vibrational Analysis of (E)-N’-(Pyridin-2-yl)Methylene)Nicotinohydrazide Using Quantum Chemical Calculation

Full Text PDF


FT-IR, FT-Raman and UV-Vis spectra of the Schiff base compound (E)-N’-(Pyridin-2-yl) methylene) nicotinohydrazide (P2CNH) have been recorded and analyzed. The optimized molecular structures, vibrational assignment of P2CNH have been investigated by using DFT/B3LYP/6-311++G(d,p) level of theory. The Non-linear optical behavior of the title compound was measured using first order hyperpolarizability calculation. Hyperconjugative interaction and electron densities of donor (i) and acceptor (j) bonds were calculated using NBO analysis. The energy gap of the molecule was found using HOMO and LUMO calculation. The electronic transition was studied using TD-DFT method. In addition of mulliken atomic charges and MEP surface have been also analyzed.


International Letters of Chemistry, Physics and Astronomy (Volume 61)
A. Nathiya et al., "Structural and Vibrational Analysis of (E)-N’-(Pyridin-2-yl)Methylene)Nicotinohydrazide Using Quantum Chemical Calculation", International Letters of Chemistry, Physics and Astronomy, Vol. 61, pp. 162-177, 2015
Online since:
November 2015

[1] Y.L. Angelique, J.M. Thomas, Metal Complexes as Enzyme inhibitors. Chem. Rec. 99 (1999) 2711-2734.

[2] D.R. Richardson, P.V. Bernhardt, Crystal and molecular Structure of 2-hydroxy-1-napthalldehyde isonicotinoyl hydrazone (NIH) and its iron (III) complex: an iron chelator with anti-tumour activity, JBIC. 4 (1999) 266-273.


[3] Z.Y. Yang, R-D. Yang, F-S. Li, K-B. Yu, Crystal structure and antitumour activity of some rare earth metal complexes with Schiff base. Polyhedron. 19 (2000) 2599-2604.


[4] J.L. Buss, J. Neuzil, P. Ponka, Oxidative stress mediates toxicity of pyridoxal isonicotinoyl hydrozone analogs. Arch. Biochem. Biophys. 421 (2004) 1-9.


[5] L. Sommer, W.P. Maung-Gyee, D.E. Ryan, Heterocyclic hydrozones of o-hydroxyaldehyde as analytical reagents. Ser. Fac. Sci. Nat. Univ. Purkynianae. 2 (6) (1972) 115-128.

[6] H. Shargi, M.A. Nasser, Schiff-base metal (II) complexes as new catalysts in the efficient. mild and regioselective conversion of 1, 2-epoxyethans to 2-hydroxy-ethyl thiocyanates with ammonium thiocyanate. Bull. Chem. Soc. (Jpn. ) 76 (2003).


[7] G. Fitzgerald, J. Andzelm, J. Phys. Chem. 95 (1991) 10531-10534.

[8] H. Tanak, ink, J. Quant. Chem, 112 (2011) 2392-2402.

[9] M.J. Frisch, G.W. Trucks, H.B. Schlegal, G.E. Scuseria, M.A. Robb et al., GAUSSIAN 03, Revision A. 02, GAUSSIAN Inc., Wallingford CT. (2009).

[10] H.B. Schlegel, J. Comput. Chem. 3 (1982) 214-218.

[11] P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) B864-B871.


[12] A. Frisch, A.B. Nielson, A.J. Holder, Gauss View user manual, Gaussian Inc, Pittsburgh, PA, (2000).

[13] G. Rauhut, P. Pulay, Transferable Scaling Factors for Density Functional Derived Vibrational Force Fields, J. Phys. Chem. 99 (1995) 3093-3100.


[14] B.S. Bahl, Arun Bahl, Advanced Organic Chemistry, S. Chand & Company Ltd., New Delhi, (1996).

[15] M.H. Jamroz, Vibrational Energy Distribution Analysis, VEDA4 Program, Poland, (2004).

[16] L.J. Bellamy, The Infrared Spectra of Complex Molecules, vol. 2, Chapman and Hall, London, (1980).

[17] S. Gunasekaran, S.R. Varadhan, K. Manoharan, Asian. J. Phys. 2 (1993) 165.

[18] G. Socrates, Infrared and Raman characteristic Group Frequencies Table and Charts, third ed., Wiley, Chichester, (2001).

[19] M. Silverstein, C.G. Basseler, C. Morill, Spectrometric Identification of Organic Compounds, Wiley, New York, (1981).

[20] G. Varsanyi, Assignments of vibrational spectra of 700 Benzene Derivatives, Wiley, New York, (1974).

[21] D.N. Sathyanarayanan, Vibrational spectroscopy theory and applications, New Age International Publishers, New Delhi, (2004), 446–447.

[22] N.P.G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structure, Wiley, New York, (1994).

[23] M. Barathes, G. De Nunzio, M. Ribet, Synth. Met. 76 (1996) 337.

[24] C. James, C. Ravikumar, T. Sundis, V. Krishnakumar, R. Kesavamoorthy, V.S. Jayakumar, I. Hubert Joe, Vib. Spectrosc. 47 (2008) 10–20.

[25] V. Krishnakumar, S. Muthunatesan, Spectrochim. Acta A 65 (2006) 818–825.

[26] P.J. Larkin, IR. Raman, Spectroscopy Principal and Spectral interpretation, (2011).

[27] M. Silverstein, C.G. Basseler, C. Morill, Spectrometric Identification of Organic Compounds, Wiley, New York, (1981).

[28] G. Socrates, Infrared Characteristic Group Frequencies, John Wiley and Sons Ltd., New York, (1980).

[29] S. Subashchandrabose, C. Meganathan, Y. Erdogdu, H. Saleem, C. Jayakumar, P. Latha, J. Mol. Struct. 1042 (2013) 37–44.

[30] Y.X. Sun, Q.L. Hao, W.X. Wei, Z.X. Yu, L.D. Lu, X. Wang, Y.S. Wang, J. Mol. Struct. (Therochem) 904 (2009 )74.

[31] S. Sebastian, N. Sundaraganesan, Spectrochim. Acta 75 (2010) 941-952.

[32] K. Fukui, Science 218 (1982) 747-754.

[33] A. Rauk, Orbital Interaction Theory of organic chemistry, 2nd ed., wiley-Interscience, New York, (2001) 86.

[34] B.J. Powell, T. Barahch, N. Bernstein, K. Brake, R.H. Mckenzie, P. Meredith, M.R. Pederson, J. Chem. Phys. 120 (2004) 8608-8615.

[35] R.M. Silverstein, G. Clayton Bassler, T.C. Morrill, Spectrometric identification of organic compounds, John wiley, New York, (1991).

[36] I. Sidir, Y.G. Sidir, M. Kumalar, E. Tasal, J. Mol. Struct. 964 (2010) 134-138.

[37] S.I. Gorelsky, Swizard Program Revision 45., http: /www. sg. chem. net/university of Ottawa, Canada, (2010).

[38] J. Bevan ott, J. Boerio-Goates, calculations form statistical thermodynamics, academic press, (2000).

[39] R. Zhang, B. Dub, G. Sun, Y. Sun, Spectrochimica Acta A 75 (2010) 1115-1124.

Show More Hide
Cited By:
This article has no citations.