Paper Titles in Periodical
International Letters of Chemistry, Physics and Astronomy
Volume 61

Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 61 > Growth and Characterization of Reactive DC...
< Back to Volume

Growth and Characterization of Reactive DC Magnetron Sputtered Aluminum Titanate Thin Films

Full Text PDF

Abstract:

Aluminum titanate (Al2TiO5) films were deposited on to unheated p-silicon and quartz substrates by reactive DC magnetron sputtering of Al67Ti33 target at an oxygen flow rate of 8 sccm and at sputter pressure of 2x10-3 mbar. The as-deposited films were annealed in oxygen ambient at 600°C. The as-deposited and annealed films were characterized for chemical composition core level binding energies, crystallographic structure and optical properties. The as-deposited films were amorphous in nature while those annealed in oxygen were of polycrystalline with orthorhombic structure. Atomic force micrographs confirmed the fine grain growth of the films and the size of the grain increased in annealed films. The films showed optical transmittance of above 85 % in the visible region. The optical band gap of the films decreased from 4.58 eV to 4.50 eV.

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 61)
Pages:
110-117
Citation:
S. Addepalli and U. Suda, "Growth and Characterization of Reactive DC Magnetron Sputtered Aluminum Titanate Thin Films", International Letters of Chemistry, Physics and Astronomy, Vol. 61, pp. 110-117, 2015
Online since:
November 2015
Export:
Distribution:
References:

[1] J. Yota, H. Shen and Ravi Ramanathan: Characterization of atomic layer deposited HfO2, Al2O3 and plasma enhanced chemical vapor deposited Si3N4 as metal insulator metal capacitor dielectric for GaAs HBT technology, J. Vac. Sci. Technol. A31 (2013).

DOI: https://doi.org/10.1116/1.4769207

[2] W. Liu, Handbook of III-V Heterojunction Bipolar Transistors, New York, John Wiley (1998).

[3] W. G. Kim and S. W. Rhee, Microelectron. Eng. 86 (2009), 21539.

[4] K. J. Han, K. S. Kang, Y. Chen, K. H. Yoo and J. Kim: Effect of annealing temperature on the conduction mechanism for a sol-gel grown ZnO Schottky diode, J. Phys. D: Appl. Phys. 42 (2009), 125110.

DOI: https://doi.org/10.1088/0022-3727/42/12/125110

[5] Z. Jiahui, C. Hudong, L. Honggang, L. Guiming, X. Wenjun, L. Qi, L. Simin, H. Zhiyi and L. Haiou: MIM capacitors with various Al2O3 thickness for GaAs RFIC application, J. Semicond. 36 (2015), 054004.

DOI: https://doi.org/10.1088/1674-4926/36/5/054004

[6] P. Poulopoulos, S. Grammatikopoulos, D. Trachylis, G. Bissas, I. Dragatsikas, M. J. Velgakisand C. Politis: Growth and optical properties of nanocrystalline titania films for Optoelectronics and photovoltaics, J. Surf. Interface Mater. 3 (2015).

DOI: https://doi.org/10.1166/jsim.2015.1077

[7] K. A. Aadim, K. H. Abass and Q. M. Hadi: Effect of annealing temperature on the optical properties of TiO2 thin films prepared by pulse laser deposition, International Lett. Chem. Phys. Astronomy 56 (2015), 63.

DOI: https://doi.org/10.18052/www.scipress.com/ilcpa.56.63

[8] S. B. Chen, C. H. Lai, A. Chin, J. C. Hsieh and J. Liu: High density MIM capacitors using Al2O3 and AlTiOx dielectrics, IEEE Electron. Dev. Lett. 23 (2002), 183.

[9] S. Y. Lee, K. S. Bang and J. W. Lim: Sputter deposited AlTiO films for semitransparent silicon thin film solar cells, J. Electron. Mater. 43 (2014), 3204.

[10] D. H. Kuo and C. N. Shueh: Properties of aluminum titanate films prepared by chemical vapor deposition under different aluminum butoxide inputs, Thin Solid Films 478 (2005), 109.

DOI: https://doi.org/10.1016/j.tsf.2004.10.021

[11] D. H. Kuo and C. N. Shueh: Properties of CVD alumina-titania composite films grown at different CO2/H2 inputs, J. Non-Crystalline Solids 336 (2004), 120.

DOI: https://doi.org/10.1016/j.jnoncrysol.2004.01.002

[12] S. Ananthakumar, M. Jayasankar and K. G. K. Warrier: Microstructural, mechanical and thermal characterization of sol-gel derived aluminum titanate-mullite ceramic composites, Acta Materialia 54 (2006), 2965.

DOI: https://doi.org/10.1016/j.actamat.2006.02.032

[13] M. Jayasankar, S. Ananthakumar, P. Mukundan and K. G. K. Warrier: Low temperature synthesis of aluminum titanate by aqueous sol-gel route, Mater. Lett. 61 (2007), 790.

DOI: https://doi.org/10.1016/j.matlet.2006.05.075

[14] R. Sanjines, H. Tang, H. Berger, F. Gozzo, G. Margaritondo and F. Levy: Electronic structure of anatase TiO2 oxide, J. Appl. Phys. 75 (1994), 2945.

DOI: https://doi.org/10.1063/1.356190

[15] M. Chandra Sekhar, P. Kondaiah, G. Mohan Rao, S. V. Jagadeesh Chandra and S. Uthanna: Postdeposition annealing influenced structural and electrical properties of Al/TiO2/Si gate capacitors, Superlattices Microelectronics 62 (2013), 68.

DOI: https://doi.org/10.1016/j.spmi.2013.07.001

[16] Y. S. Liu, Y. H. Lin, Y. S. Wei and C. Y. Liu: Formation of carriers in titanium oxide thin films by substitution reactions, J. Appl. Phys. 111 (2012), 043103.

[17] M. Chandra Sekhar, N. Nanda Kumar Reddy, S. Victor Vedanayakan and M. Raja Reddy: Influence of post-deposition annealing on the structural and electrical properties of magnetron sputtered Al/(Ta2O5)0. 85(TiO2)0. 15/p-Si structure, J. Optoelectron. Adv. Mater. 16 (2014).

[18] C. D. Wagner, L. E. Davis, M. V. Zeller, J. A. Taylor, R. H. Raymond and L. H. Gale: Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis, Surf. Interface Anal. 3 (1981), 211.

DOI: https://doi.org/10.1002/sia.740030506

[19] JCPDS International Centre for Diffraction Data Card No. 74-1759.

[20] N. Martin, C. Rousselot, D. Rondot, F. Palmino and R. Mercier: Microstructure modification of amorphous titanium oxide thin films during annealing treatment, Thin Solid Films 300 (1997), 113.

DOI: https://doi.org/10.1016/s0040-6090(96)09510-7

[21] D. Yoo, I. Kim,S. Kim, C. H. Hahn, C. Lee and S. Choi: Effects of annealing temperature and method on structural and optical properties of TiO2 films prepared by RF magnetron sputtering at room temperature, Appl. Surf. Sci. 253 (2007), 3888.

DOI: https://doi.org/10.1016/j.apsusc.2006.08.019

[22] J. Tauc, Amorphous and Liquid Semiconductors, Plenum Press, New York (1974).

[23] A. Akl, H. Kamal and K. A. Hady: Fabrication and characterization of sputtered titanium dioxide films, Appl. Surf. Sci. 252 (2006), 8651.

DOI: https://doi.org/10.1016/j.apsusc.2005.12.001

[24] V. A. C. Haanappel, J. B. Rem, H. D. Van Corbach, T. Fransen and P. J. Gellings: Properties of alumina films prepared by low pressure metal organic chemical vapor deposition, Surf. Coat. Technol. 72 (1995), 13.

DOI: https://doi.org/10.1016/0257-8972(94)02328-n

[25] J. Saraie, K. Ono and S. Takeuchi: Effects of various atmospheres on the reduced pressure CVD of Al2O3 thin films at low temperatures, J. Electrochem. Soc. 136 (1989), 3139.

DOI: https://doi.org/10.1149/1.2096415

[26] K. Okimura, N. Maeda and A. Shibata: Characteristics of rutile TiO2 films prepared by RF magnetron sputtering at low temperatures, Thin Solid Films 281- 282 (1996), 427.

DOI: https://doi.org/10.1016/0040-6090(96)08659-2
Show More Hide
Cited By:
This article has no citations.