Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 6 > Aqueous Dispersion and Temperature Induced...
< Back to Volume

Aqueous Dispersion and Temperature Induced Reversible Fluorescence Properties of 1-Pyrenecarboxaldehyde

Full Text PDF

Abstract:

The fluorescence intensities for various vibronic fine structures in the 1-pyrenecarboxaldehyde (PyCHO) fluorescence show strong environment dependence. In aqueous solvent, the distribution of dye is highly depended on its concentration labels and varies from excimer to monomeric state. UV-Vis Spectroscopic analysis could not able to detect dye below 10-7M concentration, whereas a new monomeric peak at 342 nm was observed after heating and cooling treatment at above the concentration. At 10-8M concentration, only monomeric distribution of 1-PyCHO reveals a strong temperature (20-50 °C) induced reversible perturbation of the vibronic band intensities. This suggests the operation of some specific solute-solvent dipole-dipole interaction mechanism strongly influenced by heating.

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 6)
Pages:
55-62
Citation:
M. Ashaduzzaman and M. Kunitake, "Aqueous Dispersion and Temperature Induced Reversible Fluorescence Properties of 1-Pyrenecarboxaldehyde", International Letters of Chemistry, Physics and Astronomy, Vol. 6, pp. 55-62, 2013
Online since:
Sep 2013
Export:
Distribution:
References:

[1] P. A. Geldof., R. P. H. Rettschnick, G. J. Hoytink, Chemistry of Physics Letter 4 (1969) 59-61.

[2] J. B. Binks, Wiley-Interscience, New York, N.Y., (1970).

[3] H. W. Offen in, Vol. I, J. B. Birks, Ed., Wiley-Interscience. New York, N.Y., (1975).

[4] J. T. Richards, A. West, J. K. Thomas, Journal of Physical Chemistry 74 (1970) 4137.

[5] M. Gratzel, J. K. Thomas, Journal of Physical Chemistry 78 (1974) 2208.

[6] C. A. Parker, Elsevier. New York, N.Y., (1968).

[7] A. Pellois, J. Rlpoche, Chemistry of Physics Letter 3 (1989) 280.

[8] A. Nakajima, Bulletin of Chemical Society of Japan 44 (1971) 3272.

[9] A. Nakajima, Spectrochim. Acta, Part A, 30 (1974) 860.

[10] A. Nakajima, Journal of Molecular Spectroscopy 61 (1976) 467.

[11] A. Nakajima, Jornal of Luminescence 11 (1976) 429.

[12] J. Rao, J. Xu, S. Luo, S. Liu, Langmuir 23 (2007) 11857-11865.

[13] R. D. Stramel, Chinh Nguyen, S . E. Webber, M. A. J. Rodgers, J. Phys. Chem., 92 (1988) 2934-2938.

DOI: https://doi.org/10.1021/j100321a044

[14] M. A. Winnik, S. M. Bystryak, Z. Liu, J. Siddiqui, Macromolecules 31 (1998) 6864.

[15] M. Mazur, G. J. Blanchard, Journal of Phyical Chemistry B 109 ( 2005) 4076-4083.

[16] K. Bredereck, Th. Forster, H.G. Oenstein, Ed. Willey, New York, N.Y., (1960).

[17] K. Kalyanasundaram, J. K. Thomas, Journal of Physical Chemistry 81 (1977) 23.

Show More Hide