Paper Titles in Periodical
International Letters of Chemistry, Physics and Astronomy
Volume 59


Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 59 > Reactivity of Phenol and Aniline towards...
< Back to Volume

Reactivity of Phenol and Aniline towards Quinolinium Chloro Chromate: A Comparative Oxidation Kinetic Study

Full Text PDF


The kinetics of Oxidation of Phenol and aniline by quinolinium Chlorochromate (QCC) in aqueous acetic acid medium leads to the formation of quinone and azobenzene respectively. The reactions are first order with respect to both Phenol and aniline. The reaction is first order with respect to quinolinium chlorochromate (QCC) and is catalyzed by hydrogen ion. The hydrogen-ion dependence has the form: kobs = a+b [H+]. The rate of oxidation decreases with increasing dielectric constant of solvent, indicating the presence of an ion-dipole interaction. The reaction does not induced the polymerization of acrylonitrile. The retardation of the rate by the addition of Mn2+ ions confirms that a two electron transfer process is involved in the reaction. The reaction rates have been determined at different temperatures and the activation parameters have been calculated. From the above observations kinetic results a probable mechanism have been proposed.


International Letters of Chemistry, Physics and Astronomy (Volume 59)
S. K. Periyasamy et al., "Reactivity of Phenol and Aniline towards Quinolinium Chloro Chromate: A Comparative Oxidation Kinetic Study", International Letters of Chemistry, Physics and Astronomy, Vol. 59, pp. 81-92, 2015
Online since:
Sep 2015

[1] Corey E J and Suggs W J Tetrahedron Lett. 2647 (1975).

[2] Bhattacharya M M, Chaudhuri M K, Dasgupta H S, Roy N and Kathing D T Synthesis. 588 (1982).

[3] Li M and Johnson M E Synth. Commun. 25 533(1995).

[4] Firouzabadi H and Sharifi A Synthesis. 999(1992).

[5] Dhariwal. V, Yuajurvedi. D and Sharma. P. K, J. Chem. Res. (S) 194(1997).

[6] Gurumurty. R, Gopalkrishnan. M and Karthikeyan. B, Asian J. Chem. 10, 476 (1998).

[7] Kumbhat. V, Sharma. P. K and Banerji. K. K, Indian J. Chem. 39A, 1169 (2000).

[8] Patil. S. G, Joshi. S. B, Asian J. Chem. 14, 130, (2002).

[9] Dave. J, Sharma. V and Banerji. K. K, J. Indian Chem. Soc. 79, 347, (2002).

[10] Nalawaya. N, Jain. A and Hiran. B. L, J. Indian Chem. Soc. 79, 587, (2002).

[11] Chimatadar.S. A, Salunke. M. S and Nandibewoor. S. T, Indian J. Chem. 45A, 388, (2006).

[12] Kavita. S, Pandurangan. A and Alphonse. I, Indian J. Chem. 44A , 715(2005).

[13] Bhuvaneshwari. D. S and Elengo. K. P, Int. Chem. Kint. 37, 166, (2005).

[14] Khansole. S. V, Patwari. S. B, Vibhute. A. Y and Vibhute. Y. B, Chin. Chem. Lett., 20, 256, (2009).

[15] Srinivasan. R, Ramesh. C. V, Hadhulatha. W and Balasubramanian. K Ind. J. Chem., 35(A), 480, (1996).

[16] Cainelli. G and Cardillo. G, Chromium Oxidation in Organic Chemistry, Springer Verlag, NewYork, (1984).

[17] Corey. E. J, and Suggs. J. W, Tetrahedron Lett., 16, 2647, (1975).

[18] Murugesan. V and Pandurangan. A, Ind. J. Chem., 31, 377, (1992).

[19] Lonkar. S. M, Mokle. S. S, Vibhute. A. Y, and Vibhute. Y. B., Der Chemica Sinica., 1(2), 119(2010).

[20] Vaijayanthi. S. P, Mathiyalagan. N, Der Chemica Sinica., 2(3), 41, (2011).

[21] Pandeeswaran. M, Johns. B, Bhuvaneswari. D. S and Elango. K. P, J. Serb. Chem Soc., 70, 145 (2005).

[22] Saravanakanna. S, Elango. K. P, Int, H, Chem. Kinet., 34, 585 (2002).

[23] Ozgun. B and Degirmenbasi, Monatsh. Chem., 135, 483 (2004).

[24] Singh. J. V, Mishra, K and Pandey. A, Oxid. Commun., 26, 235 (2003).

[25] Singh.J. V, Mishra. K and Pandey. A, Bull. Polish Acad. Sci., 51, 25 (2003).

[26] Chaubey. G. S, Kharsyntiew. B and Mahanti. M. K, J. Phys. Org. Chem. Commun., 17, 83 (2003).

[27] Rajalakshmi. K and Ramachandramoorthy. T Int.J. Res. Pharm&bio science., 03, 1050 (2012).

[28] S. Khnasole.S. V and Patwari.S. B Int. J. Res. Phy. Chem ., 03, 01 (2013).

[29] Usama Akram Saeed, J. Eng. Development., 18, 1813 (2014).

[30] Exner. O, Streitwiser. R. W and Taft. R. W, Progress in physical organic chemistry, John wiley, New York, 41(1973).

[31] Eyring. H, J. Chem. Phys., 33, 107 (1935).

[32] Rajalakshmi. K, Ramachandramoorthy. T and Srinivasan, S, Rasayan J. Chem., 5(1) 28(2012).

[33] Kumar rai, K, Kannaujia, R, Karuna Rai and Surjeet Singh, Orien. J. Chem., 29, 1071 (2013).

DOI: 10.13005/ojc/290330

[34] Weissberger, A and Prabhakar. E. S, Organic solvents Physical Properties and Methods of Purifications, 2nd ed., Interscience Publishers Ltd., London (1963).

[35] Chockalingam. P, Ramakrishnan,P. S, Arulraj. S. J and Nambi, K, J. Indian Chem. Soc., 69, 247 (1992).

[36] Patwari.S. B, Khansole. S. V and Vibhute. Y. B, J. Iran. Chem. Soc., 6, 399(2009).

[37] Rao.C. N, A Hand Book of Chemistry and Physics, Affiliated East-West Press, New Delhi (1967).

[38] Amis. E. S, Solvent Effects on Reaction Rates and Mechanism, Academic Press, New York(1967).

[39] Quinlan and Amis. E. S, J. Am. Chem. Soc., 77, 4187 (1955).

[40] Graham. G. T. E and Westheimer. F. H, J. Am. Chem. Soc., 80, 3030 (1958).

[41] Gurumurthy. R and Karunakaran. K, J. Indian Chem. Soc., 72, 349 (1995).

[42] Karthikeyan. G, Elango. K. P, Periyasamy. V and Vijayakumar. K, Asian J. Chem., 7(4), 705 (1995).

[43] Frost. A and Pearson. R. G Kinetics and Mechanism, Eastern, New Delhi (1970).

[44] Eyring. H, J. Chem. Phys., 33, 107 (1935).

[45] Wiberg. K. B and Mill. T, J. Am. Chem. Soc., 80, 3022 (1958).

Show More Hide