Paper Titles in Periodical
International Letters of Chemistry, Physics and Astronomy
Volume 59


Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 59 > Structural and Optical Properties of...
< Back to Volume

Structural and Optical Properties of (CdO)1-x(SnO2)x Thin Films Prepared by Pulsed Laser Deposition

Full Text PDF


CdO thin films have been deposited at different concentration of SnO2 (x= (0.0, 0.05, 0.1, 0.15 and 0.2)) Wt. % onto glass substrates by pulsed laser deposition technique (PLD) using Nd-YAG laser with λ=1064nm, energy=600mJ and number of shots=500. X-ray diffraction (XRD) results reveal that the deposited (CdO)1-x(SnO2)x thin films cubic structure and the grain size increase with increasing annealing temperature and increasing concentration of SnO2. The optical transition in the (CdO)1-x(SnO2)x thin films are observed to be allowed direct transition. The value of the optical energy gap decreases with increasing of annealing temperatures and increase with increasing concentration of SnO2 for all samples.


International Letters of Chemistry, Physics and Astronomy (Volume 59)
N. B. Hasan et al., "Structural and Optical Properties of (CdO)1-x(SnO2)x Thin Films Prepared by Pulsed Laser Deposition", International Letters of Chemistry, Physics and Astronomy, Vol. 59, pp. 62-71, 2015
Online since:
Sep 2015

[1] D. M. Galicia, R. C. Perez, O. J. Sandoval, S. J. S Sandoval and C. I. Z. Romero, J. Thin Solid Film, Vol. 371, pp.105-108, (2000).

[2] P. A. Radi, A. G. Brito, J. M. Madurro and N. O. Dantas, Brazilian J. Physics, Vol. 36, pp.412-414, (2006).

[3] R. S. Mane, H. M. Pathan, C. D. Lokhande and S. H. Han, J. Solar Energy, Vol. 80, pp.185-190, (2006).

[4] P. Sinatirajah, J. Applied Surface Science, Vol. 254 (13), p.3813–3818, (2008).

[5] C. H. Bhosale, A.V. Kambale, A. V. Kokate and K.Y. Rajpure, J. Materials Science and Engineering, Vol. B122, pp.67-71, (2005).

[6] X. Li, T. Gessert, C. Dehart, T. Barnes, J. Perkins and T. Coutts, proceeding of the NCPV Program Review Meeting, Colorado, (2001).

[7] D. M. Ellis and S. J. Irvine, University of Wales, (2002).

[8] K. Hame and S. E. San, J. Solar Energy, Vol. 77 (3), pp.291-294, (2004).

[9] S. Kose and F. Atay, International J. Green Energy, Vol. 1 (3), pp.353-364, (2004).

[10] J. C. Manifacier, M. De–Murcia, J.P. Fillard, Thin solid Films, Vol. 41, p.127, (1977).

[11] D. K. Lide, Chemical Rubber Company Hand Book of chemistry and physics, CRC press, Boca Raton, Florida, USA, 77th ed., (1996 ).

[12] J. E. Macintyner, chapman and Hall, London, UK, Vol. 1-3, (1992).

[13] W. I. Cho, H. Jang and S. R. Lee, Script. Met. Vol. 32, p.815, (1995).

[14] M.C. Giulio, G. Micocci, A. Serra, A. Tepore, R. Rella and P. Siciliano, J. Sens. Actuators, Vol. B 24 -25, P. 564, (1995).

[15] M. C. Horrillo, P. Saotos and L. Manes, J. Sens. Actuators, Vol. B45, p.193. (1997).

[16] D. Liu, Q. Wang, H. l. M. Jang and H. Chen, J. Mat. Res, Vol. 10, p.1516. (1995).

[17] Y. Lin, W. Zhu, O. K. Tan and X. Tao, J. Mat. Sci, Vol. 7, p.279, (1996).

[18] P. Sagar, M. Kumar and R. M. Mehra, J. Materials Science-Poland, Vol. 23, N. 3, p.685, (2005).

[19] O. P. Agnilotri and B. K. Gupta, J. Applied Physics, Vol. 18, pp.317-320, (1979).

[20] N.B. Hasan and M. A. Mohammed, J. International Letters of Chemistry, Physics and Astronomy, Vol. 53, pp.146-153, (2015).

[21] E. Yang, Microelectronic devices, McGraw-Hill, New York, (1988).

[22] S. R. Elliot, Physics of amorphous materials, Longman group limited, (1983).

[23] A. K. Singh, Pushpendra Kumar, J. Kedar Singh and N. S. Saxenaa, Chalcogenide Letters, Vol. 3, pp.139-144, (2006).

Show More Hide