Paper Titles in Periodical
International Letters of Chemistry, Physics and Astronomy
Volume 59

Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 59 > Extremal Degree-Product Indices of Graphs with...
< Back to Volume

Extremal Degree-Product Indices of Graphs with Fixed Number of Pendant Vertices and Cyclomatic Number

Full Text PDF

Abstract:

The Narumi-Katayama index and first multiplicative Zagreb index of a graph are defined as the product of the degrees of the vertices of and the product of square of the degrees of the vertices of , respectively. The second multiplicative Zagreb index is defined as . In this paper, we compute the extremal , and for the graphs with given order, number of pendant vertices and cyclomatic number.

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 59)
Pages:
53-61
DOI:
10.18052/www.scipress.com/ILCPA.59.53
Citation:
M.K. Jamil et al., "Extremal Degree-Product Indices of Graphs with Fixed Number of Pendant Vertices and Cyclomatic Number", International Letters of Chemistry, Physics and Astronomy, Vol. 59, pp. 53-61, 2015
Online since:
Sep 2015
Export:
Distribution:
References:

[1] I. Gutman, M. Ghorbani, Some properties of the Narumi-Katayama index, Applied Mathematics Letters, 25(2012) 1435-1438.

DOI: 10.1016/j.aml.2011.12.018

[2] I. Gutman, M. K. Jamil, N. Akhter, Graphs with fixed number of pendant vertices and minimal first Zagreb index, Trans Comb., 4(2015) 29-34.

[3] B. Horoldagva, S.G. Lee, Comparing Zagreb indices for connected graphs, Discr. Appl. Math., 158 (2010) 1073-1078.

DOI: 10.1016/j.dam.2010.02.013

[4] D. J. Klein, V. R. Rosenfeld, The degree-product index of Narumi and Katayama. MATCH Commun. Math. Comput. Chem., 64(2010) 607-618.

[5] M. Khalifeh, H. Yousefi Azari, A.R. Ashrafi , The first and second Zagreb indices of graph operations. Discr. Appl. Math., 157 (2009) 804-811.

DOI: 10.1016/j.dam.2008.06.015

[6] H. Narumi, M. Katayama, Simple topological index, A newly devised index characterizing the topological nature of structural isomers of saturated hydrocarbons, Memoirs of the Faculty of Engineering, Hokkaido University 16 (1984) 209-214.

[7] S. Nikoli, G. Kovaevi, A. Milievi, N. Trinajsti, The Zagreb indices 30 years after, Croat. Chem. Acta, 76 (2003) 113-124.

[8] R. Todeschini, D. Ballabio, V. Consonni, Novel molecular descriptors based on functions of new vertex degrees. In: Novel molecular structure descriptors - Theory and applications I. (I. Gutman, B. Furtula, eds. ), pp.73-100. Kragujevac: Univ. Kragujevac (2010).

[9] R. Todeschini, V. Consonni, New local vertex invariants and molecular descriptors based on functions of the vertex degrees. MATCH Commun. Math. Comput. Chem., 64 (2010) 359-372.

[10] Ž. Tomovi, I. Gutman, Narumi-Katayama index of phenylenes, J. Serb. Chem. Soc., 66 (2001) 243-247.

[11] N. Trinajsti, S. Nikoli, A. Milievi, I. Gutman, On Zagreb indices. Kemija u industriji, 59 (2010) 577-589 (in Croatian).

[12] D. B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, (2001).

[13] Z. You, B. Liu, On the extremal Narumi-Katayama index of graphs, Filomat, 28(2014) 523-529.

[14] Q. Zhao, S. Li, On the maximum Zagreb index of graphs with cut vertices. Acta Appl. Math., 111 (2010) 93-106.

DOI: 10.1007/s10440-009-9534-1
Show More Hide