The Narumi-Katayama index and first multiplicative Zagreb index of a graph are defined as the product of the degrees of the vertices of and the product of square of the degrees of the vertices of , respectively. The second multiplicative Zagreb index is defined as . In this paper, we compute the extremal , and for the graphs with given order, number of pendant vertices and cyclomatic number.

Periodical:

International Letters of Chemistry, Physics and Astronomy (Volume 59)

Pages:

53-61

DOI:

10.18052/www.scipress.com/ILCPA.59.53

Citation:

M.K. Jamil et al., "Extremal Degree-Product Indices of Graphs with Fixed Number of Pendant Vertices and Cyclomatic Number", International Letters of Chemistry, Physics and Astronomy, Vol. 59, pp. 53-61, 2015

Online since:

Sep 2015

Authors:

Distribution:

Open Access

This work is licensed under a

Creative Commons Attribution 4.0 International License

References:

[1] I. Gutman, M. Ghorbani, Some properties of the Narumi-Katayama index, Applied Mathematics Letters, 25(2012) 1435-1438.

DOI: 10.1016/j.aml.2011.12.018[2] I. Gutman, M. K. Jamil, N. Akhter, Graphs with fixed number of pendant vertices and minimal first Zagreb index, Trans Comb., 4(2015) 29-34.

[3] B. Horoldagva, S.G. Lee, Comparing Zagreb indices for connected graphs, Discr. Appl. Math., 158 (2010) 1073-1078.

DOI: 10.1016/j.dam.2010.02.013[4] D. J. Klein, V. R. Rosenfeld, The degree-product index of Narumi and Katayama. MATCH Commun. Math. Comput. Chem., 64(2010) 607-618.

[5] M. Khalifeh, H. Yousefi Azari, A.R. Ashrafi , The first and second Zagreb indices of graph operations. Discr. Appl. Math., 157 (2009) 804-811.

DOI: 10.1016/j.dam.2008.06.015[6] H. Narumi, M. Katayama, Simple topological index, A newly devised index characterizing the topological nature of structural isomers of saturated hydrocarbons, Memoirs of the Faculty of Engineering, Hokkaido University 16 (1984) 209-214.

[7] S. Nikoli, G. Kovaevi, A. Milievi, N. Trinajsti, The Zagreb indices 30 years after, Croat. Chem. Acta, 76 (2003) 113-124.

[8] R. Todeschini, D. Ballabio, V. Consonni, Novel molecular descriptors based on functions of new vertex degrees. In: Novel molecular structure descriptors - Theory and applications I. (I. Gutman, B. Furtula, eds. ), pp.73-100. Kragujevac: Univ. Kragujevac (2010).

[9] R. Todeschini, V. Consonni, New local vertex invariants and molecular descriptors based on functions of the vertex degrees. MATCH Commun. Math. Comput. Chem., 64 (2010) 359-372.

[10] Ž. Tomovi, I. Gutman, Narumi-Katayama index of phenylenes, J. Serb. Chem. Soc., 66 (2001) 243-247.

[11] N. Trinajsti, S. Nikoli, A. Milievi, I. Gutman, On Zagreb indices. Kemija u industriji, 59 (2010) 577-589 (in Croatian).

[12] D. B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, (2001).

[13] Z. You, B. Liu, On the extremal Narumi-Katayama index of graphs, Filomat, 28(2014) 523-529.

[14] Q. Zhao, S. Li, On the maximum Zagreb index of graphs with cut vertices. Acta Appl. Math., 111 (2010) 93-106.

DOI: 10.1007/s10440-009-9534-1