Paper Titles in Periodical
International Letters of Chemistry, Physics and Astronomy
ILCPA Volume 59

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > ILCPA Volume 59 > Binding of Sulfamerazine and Sulfamethazine to...
< Back to Volume

Binding of Sulfamerazine and Sulfamethazine to Bovine Serum Albumin and Nitrogen Purine Base Adenine: A Comparative Study

Full Text PDF


Quenching of bovine serum albumin (BSA) and DNA base (adenine) by sulfamerazine (SM) and sulfamethazine (SMT) was studied using UV-visible, fluorescence cyclic voltammetry and molecular docking methods. A strong fluorescence quenching reaction of SM and SMT to BSA/adenine was observed and the quenching mechanism was suggested as static. Both drugs can bind to BSA and adenine with stoichiometric ratio of 1:1 and the protein - drug complexes are stabilized mainly by hydrogen bonds and van der Waals interaction. Compared to SM, SMT contributes substantially higher binding efficiency with BSA/adenine. With addition of drug solution to the adenine/BSA, the oxidation and the reduction peaks shifted towards high and low potentials, respectively. Ro, J, r and E values in the BSA-drugs are higher than that of adenine – drug molecules suggest that binding of the sulfa drugs with BSA is higher than adenine –drug molecules. Docking method specify that bioactive site of sulfa drugs moiety, the aniline group is interacted with the BSA molecules.


International Letters of Chemistry, Physics and Astronomy (Volume 59)
N. Rajendiran and J. Thulasidhasan, "Binding of Sulfamerazine and Sulfamethazine to Bovine Serum Albumin and Nitrogen Purine Base Adenine: A Comparative Study", International Letters of Chemistry, Physics and Astronomy, Vol. 59, pp. 170-187, 2015
Online since:
September 2015

S. Tabassum, W. M. AI Asbahy, M. Afzal, F. Arjmand and R. H. Khan, Interaction and photoinduced cleavage studies of a copper based chemotherapeutic drug with human serum albumin: spectroscopic and molecular docking study, Mol. BioSyst., 8 (2012).

Y. J. Hu, H. L. Yue, X. L. Li, S. S. Zhang, E. Tang, and L. P. Zhang, Molecular spectroscopic studies on the interaction of morin with bovine serum albumin, J. Photochem. Photobiol., B, 112 (2012) 16-22.

W. Zhuang, L. Li, G. Lin, Z. Deng, and M. Peng, Ilaprazole metabolites, ilaprazole sulfone and ilaprazole sulfide decreased the affinity of ilaprazole to bovine serum albumin, J. Lumin, 132 (2012) 350-356.

S. Dubeau, P. Bourassa, T. J. Thomas, and H. A. Tajmir-Riahi, Biogenic and synthetic polyamines bind bovine serum albumin, Biomacromolecules, 11 (2010) 1507-1515.

D. M. Charbonneau, and H. A. Tajmir-Riahi, Study on the interaction of cationic lipids with bovine serum albumin, J. Phys. Chem. B, 114 (2010) 1148-1155.

P. Bourassa, C. D. Kanakis, P. Tarantilis, M. G. Pollissiou, and H. A. Tajmir-Riahi, Resveratrol, genistein, and curcumin bind bovine serum albumin, J. Phys. Chem. B, 114 (2010) 3348-3354.

C. C, Brackett. H, Singh. J. H. Block, Likelihood and mechanisms of cross-allergenicity between sulfonamide antibiotics and other drugs containing a sulfonamide functional group, Pharmacotherapy, 24 (2004) 856-870.

C. T. Supuran. A. Casini. A. Scozzafava, Protease inhibitors of the sulfonamide type: Anticancer, antiinflammatory, and antiviral agents, Med. Res. Rev. 23 (2003) 535-558.

T. Trenque, G. Hoizey. D, Lamiable, Serious hypoglycemia: Munchausen's syndrome, DiabetesCare 24 (2001) 792-793.

D. M. Davies. Text book of Adverse Drug Reactions, Oxford Univ. Press, New York (1985).

J. F. Prescott. B. J. Desmond. R. D. Walker, Iowa State Univ. Press, Ames (2000).

V. Jimenez. J. Adrian. J. Guiteras. M.P. Marco, R. Companyo, Validation of an EnzymeLinked Immunosorbent Assay for Detecting Sulfonamides in Feed Resources, J. Agric. Food Chem. 58 (2010) 7526-7531.

A. L. Boreen. W. A. Arnold, K. McNeill, Photochemical fate of sulfa drugs in the aquatic environment: Sulfa drugs containing five-membered heterocyclic groups, Environ. Sci. Technol. 38 (2004) 3933-3940.

I. S. Nesterenko. M. A. Noke. S. A. Eremin, Immunochemical Methods for the Detection of Sulfanylamide Drugs, J. Anal. Chem. 64 (2009) 435-444.

Y. Zhang. S. Shi. X. Chen. W. Zhang. K. Huang M, Peng, Investigation on the interaction between ilaprazole and bovine serum albumin without or with different C-ring flavonoids from the viewpoint of food-drug interference, J. Agric. Food Chem., 59 (2011).

F. Deng. C. Dong. Y. Liu, Characterization of the interaction between nitrofurazone and human serum albumin by spectroscopic and molecular modeling methods, Mol. BioSyst., 8 (2012) 1446-1451.

M. L. Hall. W. L. Jorgensen, L. Whitehead, Automated ligand- and structure based protocol for in silico prediction of human serum albumin binding, J. Chem. Inf. Model., 53 (2013) 907-922.

Z. Omidvar. A. Asoodeh. J. Chamani, Studies on the antagonistic behavior between cyclophosphamide hydrochloride and aspirin with human serum albumin: timeresolved fluorescence spectroscopy and isothermal titration calorimetry, J. Solu. Chem, 42 (2013).

A. Y. Khan. M. Hossain, G. S. Kumar, Binding of plant alkaloids berberine and palmatine to serum albumins: a thermodynamic investigation, Mol. Biol. Rep., 40 (2013) 553-566.

AAM Prabhu, G. Venkatesh. N. Rajendiran, Spectral characteristics of sulfa drugs: effect of solvents, pH and β-cyclodextrin, J Soln Chem, 39 (2010) 1061-1086.

J. Prema Kumari, AAM. Prabhu, G. Venkatesh, V.K. Subramanian, N. Rajendiran, Spectral characteristics of sulphadiazine, sulphisomidine: effect of solvents, pH and β-cyclodextrin, Phys. Chem. Liq. 49 (2011) 108-132.

N. Rajendiran, G. Venkatesh, T. Mohandoss, Fabrication of 2D nanosheet through self assembly behavior of sulfamethoxypyridazine inclusion complexes with α-and βcyclodextrins, Spectrochim Acta A, 123A (2014) 158-166.

N. Rajendiran, T. Mohandoss, G. Venkatesh, Investigation of Inclusion Complexes of Sulfamerazine with α-and β-Cyclodextrins: An Experimental and Theoretical Study, Spectrochim Acta A, 124 (2014) 441-450.

N. Rajendiran, G. Venkatesh, J. Saravanan, Supramolecular aggregates formed by sulfadiazine and sulfisomidine inclusion complexes with α- and β-cyclodextrins. Spectrochim Acta A, 129A (2014) 157-162.

N. Rajendiran, S. Siva, Inclusion complex of sulfadimethoxine with cyclodextrins: Preparation and characterization, Carbohydr. Polym, 101 (2014) 828-836.

G. Venkatesh, T. Sivasankar, N. Rajendiran, Inclusion complexes of sulphanilamide drugs and β-CD: A theoretical approach, J. Inclu Phenom Macrocycl Chem, 77 (2013) 309-318.

Z. Bikadi, E. Hazai, Application of the PM6 semi-empirical method to modelling proteins enhances docking accuracy of Auto Dock, J. Chem. Inf. 1 (2009) 1-15.

T.A. Halgren, Merck molecular force field. I. Basis, form, scope, parametrization, and performance of MMFF94, J Comput. Chem. 17 (1998) 490-519.

G.M. Morris, D.S. Goodsell, Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, J Comput. Chem 19 (1998) 1639-1662.

N. Rajendiran, J. Thulasidhasan, Interaction of sulfanilamide and sulfamethoxazole with bovine serum albumin and adenine: Spectroscopic and molecular docking investigations. Spectrochimica Acta A. 144 (2015) 183-191.

B. Valeur, Molecular Fluorescence: Principle and Applications, Wiley Press, New York (2001).

Y. Wang, H. Zhang, G. Zhang, W. Tao, Z. Fei, Z. Liu, Spectroscopic studies on the interaction between silicotungstic acid and bovine serum albumin, J. Pharma, Biomed. Anal. 43 (2007) 1869-1875.

J.R. Lakowicz, J.G. Weber, Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules, Biochem, 12 (1973) 4161-4170.

P. Yang, The Guide Bioinorganic Chemistry. Xi'an Jiaotong Press (1991).

C.W. Wu, L. Stryer, Proximity relationships in rhodopsin, Proc. Natl. Acad. Sci. USA 69 (1972) 1104-1108.

J.R. Lakowicz. Principles of Fluorescence Spectroscopy. Plenum Press, New York (Chapter 10) (1983).

E. Laviron, Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry, J. Electronanal. Chem. 52 (1974) 355-393.

E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electronanal. Chem. 101 (1979) 19-28.

Show More Hide
Cited By:

[1] N. Rajendiran, J. Thulasidhasan, "Spectroscopic, electrochemical and molecular docking studies of dothiepin and doxepin with bovine serum albumin and DNA base", Luminescence, Vol. 31, p. 1438, 2016


[2] N. Rajendiran, M. Suresh, "Study of the Interaction of Ciprofloxacin and Sparfloxacin with Biomolecules by Spectral, Electrochemical and Molecular Docking Methods", International Letters of Chemistry, Physics and Astronomy, Vol. 78, p. 1, 2018


[3] A. Sumita, K. Anju, N. Dhenadhayalan, R. Vasanthi, R. Kumaran, "Competitive hydrogen bonding influences of fluorophore- urea-adenine system in water: Photophysical and photochemical approaches", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, p. 118409, 2020


[4] R. Dubey, B. Patel, S. Pandya, B. Socha, K. Chaudhary, B. Chavda, M. Patel, U. Patel, "Quantum chemical calculations, molecular docking, Hirshfeld surface analysis, biological activity, and characterizations (IR and NMR) of cadmium complex of triple sulfa drugs constituent sulfamethazine", Inorganic and Nano-Metal Chemistry, p. 1, 2020


[5] A. Ovung, J. Bhattacharyya, "Sulfonamide drugs: structure, antibacterial property, toxicity, and biophysical interactions", Biophysical Reviews, 2021

Show More Hide