Quantum Monte Carlo (QMC) calculations of the electric dipole moment and ground-state total energy of hydrazine (N_{2}H_{4}) molecule using CASINO-code have been carried-out by employing the VMC and DMC techniques. The optimization of the Slater-Jastrow trial wave-function was done using variance-minimization scheme. The simulations require that the configurations must evolve on the time scale of the electronic motion, and after equilibration, the estimated effective time-step be obtained. In this study, the electric dipole moment of N_{2}H_{4} molecule was calculated using only the DMC technique; and a value of 2.0D which is in good agreement with the experimental value of 1.85D was obtained. On the other hand, the ground-state total energy of N_{2}H_{4} molecule was calculated using both VMC and DMC methods. It was observed that the result obtained from the VMC technique agrees very-well with the best theoretical value [17], but the DMC technique gave a ground-state total energy lower than all other theoretical values in literature, suggesting that the DMC result of –111.842774 ± 0.00394 a.u. may be the exact ground-state total energy of hydrazine molecule. The calculated values of electric dipole moment and ground-state total energy in this work are compared with the available experimental values and the values reported by different workers. Reasonably good agreement has been obtained between them in the required order of chemical accuracy.

Periodical:

International Letters of Chemistry, Physics and Astronomy (Volume 59)

Pages:

106-114

Citation:

S. A. Ekong et al., "DMC and VMC Calculations of the Electric Dipole Moment and the Ground-State Total Energy of Hydrazine Molecule Using CASINO-Code", International Letters of Chemistry, Physics and Astronomy, Vol. 59, pp. 106-114, 2015

Online since:

September 2015

Keywords:

Distribution:

Open Access

This work is licensed under a

Creative Commons Attribution 4.0 International License

References:

[1] Skurski, P., M. Gutowski, and J. Simons, (1999): J. Phys. Chem. A, 103, Pp. 625.

[2] Elts, E., T. Windmann, D. Staak and J. Vrabec, Fluid phase behavior from molecular simulation: Hydrazine, Monomethylhydrazine, Dimethylhydrazine and Binary mixtures containing these compounds, Pp. 3 and 6. [Unpublished].

DOI: https://doi.org/10.1016/j.fluid.2012.03.008[3] Collins, G. E., and S. L. Rose-Pehrsson, (1994), Fluorescent detection of hydrazine, monomethylhydrazine, and 1, 1-dimethylhydrazine by derivatization with aromatic dicarbaldehydes, Analyst 119, Pp. 1907–(1913).

DOI: https://doi.org/10.1039/an9941901907[4] Kallikragas, D. T., K. I. Choudhry, A. Y. Plugatyr, and I. M. Svishchev, (2013).

[5] Syage, J. A., R. B. Cohen, and J. Steadman, (1992), J. Chem. Phys. 97: 6072.

[6] Sahebalzamani, H., F. Salimi, and E. Dornapour (2013), Theoretical Studies of Structure, Spectroscopy, and Properties of a New Hydrazine Derivative, Journal of Chemistry, Volume 2013, Article ID 187974, Pp. 1.

DOI: https://doi.org/10.1155/2013/187974[7] Gutowski, K. E., B. Gurkan, and E. J. Maginn, (2009), Pure Appl. Chem. 81, Pp. 1799–1828.

[8] Ueda, S., Y. Kuroda, H. Miyajima, and T. Kuwara, (1994): J. Prop. Power 10: Pp. 646.

[9] Agusta, M. K., M. David, H. Nakanishi, and H. Kasai, (2010), Surface Science 604: Pp. 245.

[10] Von Burg, R., and T. Stout, (1991), J. Appl. Toxicol; 11, Pp. 447 – 450.

[11] Nelson Jr., R. D., D. R. Lide Jr., and A. A. Maryott, (1967), Selected values of electric dipole moments for molecules in the gas phase, National Standard Reference Data Series [NSRDS]. National Bureau of Standards 10.

DOI: https://doi.org/10.6028/nbs.nsrds.10[12] Seddon, W. A., J. W. Fletcher and F.C. Sopchyshyn, (1976), Can. J. Chem. 54, Pp. 2807–2812.

[13] Kaczmarek, A., M. Shiga, and D. Marx, (2009): J. Phys. Chem. A 113, Pp. 1985–(1994).

[14] Yamabe, H., H. Kato and T. Yonezawa, (1971), Bulletin of the Chemical Society of Japan, Vol. 44, Pp. 22–27.

[15] Peel, J. Barrie, (1986), J. Chem., 39, Pp. 1284.

[16] Alagona, G, (1991), Theoretical Model of Chemical Bonding, Part 3, Molecular Spectroscopy, Electronic Structure and Intramolecular Interactions, Edited by Z. B. Maksic, Pp. 278.

[17] Schlegel, H. B. and A. Skancke, (1993): J. Am. Chem. Soc., Vol. 115, No. 16, Pp. 7466.

[18] Pires, J. M. and F. E. Jorge, (2005), Indian Journal of Chemistry, Vol. 44A, Pp. (1979).

[19] Grossman, J. C., (2002), Benchmark quantum Monte Carlo calculations, Journal of Chemical Physics Volume 117, Number 4, Pp. 1434.

[20] Foulkes , W. M. C., L. Mitas, R. J. Needs, and G. Rajagopal, (2001), Rev. Mod. Phys., 73, Pp. 33.

[21] Reynolds, P. J., D. M. Ceperley, B. J. Alder, and W. A. Lester Jr., (1982), Fixed-node quantum Monte Carlo for molecules, J. Chem. Phys. 77, Pp. 5593–5603.

[22] Anderson, J. B., (1995), Fixed-node quantum Monte Carlo, Int. Rev. Phys. Chem. 14, Pp. 85–112.

[23] Needs, R. J., M. D. Towler, N. D. Drummond, and P. López Ríos, (2009), CASINO user's guide, version 3. 0. 0 (University of Cambridge, UK, 2009).

[24] Roothaan, C. C. J., (1960), Self Consistent Field Theory for Open Shell of Electronic Systems, Rev. Mod. Phys. 32 (2): 179–185.

DOI: https://doi.org/10.1103/revmodphys.32.179[25] Lee, M. A., P. Vashista, and R. K. Kalia, (1983): Phys. Rev. Lett. 129, Pp. 2422.

[26] Mohan, V., and J. B. Anderson, (1989): Chem. Phys. Lett. 156, Pp. 520.

[27] Lüchow, A. and J. B. Anderson, (2000): Monte Carlo Methods in Electronic Structures for Large Systems. Annual Review of Physical Chemistry, Vol. 51: 501–526.

[28] Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. M. Teller, and E. Teller, (1953), J. Chem. Phys. 21: 1087–1092.

[29] Kalos, M. H., and P. A. Whitlock, (1986), In Monte Carlo Methods, New York: Wiley, Pp. 73–86.

[30] Umrigar, C.J., J.G. Wilson, K.W. Wilkins, (1988), Optimized trial wave functions for quantum Monte Carlo calculations, Phys. Rev. Lett. 60, Pp. 1719–1722.

DOI: https://doi.org/10.1103/physrevlett.60.1719[31] Needs, R. J., M. D. Towler, N. D. Drummond, and L. P. Rios, (2012), Theory of Condensed Matter Group, Cavendish Laboratory, Cambridge, UK. CASINO User's Guide, Version 2. 11. 0.

[32] Ekong, S. A., V. A. Akpan and D. A. Oyegoke, (2015), Nig. J. of Pure and Appl. Physics, Vol. 6, No. 1, Pp. 1 – 5.

[33] Kent, P. R. C., (1999): Techniques and Applications of Quantum Monte Carlo, Ph. D – Thesis at the University of Cambridge.

[34] Alain Veillard, (1966), Theoretica chimica acta, Volume 5, Issue 5, Pp. 413.