The present work refers to the investigation of natural convection into an horizontal porous circular cylinder, driven by cooperating thermal and solutal buoyancy forces. The circular cylinder is maintained at constant temperature and concentration lower than that of four inner, heat and solute, ones which are arranged in two different manners. The physical model for the momentum conservation equation makes use of the Brinkman extension of the classical Darcy equation, the set of coupled equations is solved using the finite volume method and the SIMPLER algorithm. Through a parametric study, the effects of the distance between the cylinders on the thermal and solutal characteristics are widely inspected. Then, powerful correlations predicting the mean transfer inside the porous medium as a function of the cylinders’ disposition are proposed, which predict within ±1% the numerical results. It is to note that the validity of the computing code used was ascertained by comparing our results with the experimental and the numerical ones already available in the literature.

Periodical:

International Letters of Chemistry, Physics and Astronomy (Volume 58)

Pages:

66-76

DOI:

10.18052/www.scipress.com/ILCPA.58.66

Citation:

K. Ragui et al., "The Impact of Cylindrical Fuel Assemblies’ Arrangement on the Heat and Mass Transfers into an Horizontal Porous Circular Cylinder", International Letters of Chemistry, Physics and Astronomy, Vol. 58, pp. 66-76, 2015

Online since:

Sep 2015

Authors:

Keywords:

Distribution:

Open Access

This work is licensed under a

Creative Commons Attribution 4.0 International License

References:

[1] D.A. Nield, A. Bejan, Convection in porous media, Springer, Berlin, (1992).

[2] M. Mamou, P. Vasseur, E. Bilgen, Multiple solution for double-diffusive convection in a vertical porous enclosure, Int. J. Heat Mass Transf. 36 (1993) 2479-2498.

DOI: 10.1016/0017-9310(94)00301-b[3] P. Nithiarasu, K.N. Seetharamo, T. Sundarajan, Double-diffusive natural convection in an enclosure filled with fluid-saturated porous medium: A generalized Non-Darcy approach, Num. Heat Transf. A. 30 (1996) 413-426.

DOI: 10.1080/10407789608913848[4] S. Ostrach, Natural convection with combined driving forces, Phys-Chem. Hydrodynamic 01 (1980) 233-247.

[5] Y. Kamotani, L.W. Wang, S. Ostrach, H.D. Jiang, Experimental study of natural convection in shallow enclosures with horizontal temperature and concentration gradients, Int. J. Heat Mass Transf. 28 (1985) 165-173.

DOI: 10.1016/0017-9310(85)90018-3[6] J. Lee, M.T. Hyun, K.W. Kim, Natural convection in confined fluids with combined horizontal temperature and concentration gradients, Int. J. Heat Mass Transf. 31 (1988) 1969-(1977).

DOI: 10.1016/0017-9310(88)90106-8[7] C. Benard, D. Gobin, J. Thevenin, Thermosolutale natural convection in a rectangular enclosure: Numerical Results, in Heat Transfer in Convective Flows, ASME, New York (1989) 249-254.

[8] H. Han, T.H. Kuehn, A numerical simulation of double diffusive natural convection in a vertical rectangular enclosure, in Heat Transfer in Convective Flows, ASME, R.K. Shah, Ed. New York (1989) 149-154.

DOI: 10.1016/0017-9310(91)90265-g[9] J. Chang, T.F. Lin, Unsteady thermosolutal opposing convection of liquid-water mixture in a square cavity- II: Flow structure and fluctuation analysis, Int. J. Heat Mass Transf. 36 (1993) 1333-1345.

DOI: 10.1016/s0017-9310(05)80101-2[10] F. Chen, Double-diffusive fingering convection in a porous medium, Int. J. Heat Mass Transf. 36 (1993) 793-807.

DOI: 10.1016/0017-9310(93)80055-y[11] O. Trevisan, A. Bejan, Heat and mass transfer by high Rayleigh number convection in a porous medium heated from below, Int. J. Heat Mass Transf. 30 (1987) 2341-2356.

DOI: 10.1016/0017-9310(87)90226-2[12] T.F. Lin, C.C. Huang, T.S. Chang, Transient binary mixture natural convection in a square enclosure, Int. J. Heat Mass Transf. 33 (1990) 287-299.

DOI: 10.1016/0017-9310(90)90099-g[13] R. Bennacer, Thermosolutal convection: fluid flow and heat transfer numerical simulations, Ph.D. Thesis, Pierre and Marie Curie, Paris (1993).

[14] P. Colella, D.T. Graves, B.J. Keen, and D. Modiano. A cartesian grid embedded boundary method for hyperbolic conservation laws. J. Comput. Phys., 211(1) (2006) 347-366.

DOI: 10.1016/j.jcp.2005.05.026[15] S.V. Patankar, Numerical heat transfer and fluid flow, Mc Grow, New York (1980).

[16] B. Goyeau, J.P. Songbe, D. Gobin, Numerical study of double-diffusive natural convection in a porous cavity using the Darcy-Brinkman formulation, Int. J. Heat Mass Transf. 39(7) (1996) 1363-1378.

DOI: 10.1016/0017-9310(95)00225-1[17] E.H. Bishop, C.T. Carleyt and R.E. Powe, Natural convective oscillatory flow in cylindrical annuli, Int. J. Heat Mass Transf. 11 (1968) 1741-1752.

DOI: 10.1016/0017-9310(68)90017-3[18] O. Trevisan, A. Bejan, Natural convection with combined heat and mass transfer buoyancy effects in a porous medium, Int. J. Heat Mass Transf. 28 (1985) 1597-1611.

DOI: 10.1016/0017-9310(85)90261-3