In present work we obtain the modified bound-states solutions for central family V(r)=A/r^{2}-B/r+Cr^{k }(k=0,-1,-2) in both noncommutative three dimensional spaces and phases. It has been observed that the energy spectra in ordinary quantum mechanics was changed, and replaced degenerate new states, depending on two infinitesimals parameters Θ and θ corresponding the noncommutativity of space and phase, in addition to the discrete atomic quantum numbers: j, l, s_{z=+-1/2 }and corresponding to the two spins states of electron by (up and down) and non polarized electron. The deformed anisotropic Hamiltonian formed by three operators: the first describes usual the usual family potential, the second describe spin-orbit interaction while the last one describes the modified Zeeman effect (containing ordinary Zeeman effect).

Periodical:

International Letters of Chemistry, Physics and Astronomy (Volume 58)

Pages:

164-176

Citation:

A. Maireche "New Exact Solution of the Bound States for the Potential Family V(r)=A/r^{2}-B/r+Cr^{k} (k=0,-1,-2) in both Noncommutative Three Dimensional Spaces and Phases: Non Relativistic Quantum Mechanics", International Letters of Chemistry, Physics and Astronomy, Vol. 58, pp. 164-176, 2015

Online since:

Sep 2015

Authors:

Keywords:

Distribution:

Open Access

This work is licensed under a

Creative Commons Attribution 4.0 International License

References:

[1] H. Hassanabadi, et al, International Journal of the Physical Sciences. 6 (3), 583 (2011).

[2] S. K. Bose, IL NUOVO CIMENTO. 109, 1217 (1994).

[3] L. Buragohai and S. A. Ahmed, Lat. Am. J. Educ 3 573 (2009).

[4] S. K. Bose, IL NUOVO CIMENTO. 109B, N. 3, 311 (1994).

[5] I. Sameer and S. Ramazan, CEJP. 5, 4, 516 (2007).

[6] Tapas Das, Subhankar Ray and Altug Arda. Exact Solution of N-dimensional Radial Schrödinger Equation with Pseudoharmonic Potential via Laplace Transforme Approach, arXiv: 1308. 5295v1 [math-ph] 24 Aug (2013).

DOI: https://doi.org/10.1155/2015/137038[7] M. Aygun; O. Bayrak and I. Boztosun. J. Physcs. B: At, Mol, Phys. 40 (2007) 537-544.

[8] A . Kratzer. Z. Phys. (1920) 3 289.

[9] S. Flugge. Berlin : Springer. (1994) Vol 1.

[10] E. Kasap; B. Gonul and M. Simsek. Chem. Phys. Lett. (1990) 172, 499.

[11] H. Ciftei; R. L. Hall and Q. D. Katatbeh. J. Phys. A: Math. Gen. (2003) 36, 7001.

[12] E. Castro and P. Martin. J. Phys. A: Math. Gen. (2000) 33, 5321.

[13] O. Bayrak and I. Boztosun. Int. J. Quantum Chem. (2007) 107, 388.

[14] E. S. Santos and G. R. Melo, IJP. 50, 332 (2011).

[15] A. E. F. Djema and H. Smail, Commun. Theor. Phys. 41, 837 (2004).

[16] Shi-Hai and S. Guohuo, Foundation of Physics Letters. 16, 357 (2003).

[17] Shi-Hai D, Int J Theor Phys. 39, 4, 1119-1128 (2000).

[18] Shi-Hai, D, Foundations of physics Letters. 15, 4, 385-395 (2002).

[19] Shi-Ha, i D, Int J Theor Phys. 40, 2, 559-567 (2001).

[20] Shi-Hai, D. and Guo-Huo, S, Foundation of Physics Letters. 16, 357-367 (2003).

[21] L. Buragohain and, S. A.S. Ahmed, Lat. Am. J. Phys. Educ. 4, 1, (2010).

[22] Anjana, Sinha. Int J Theor Phys. 37, 7, 2055- 2065 (1997).

[23] A. Connes., Noncommutative geometry, 1st ed. (Academic Press, Paris, France, 1994).

[24] H. Snyder, Phys. Rev. 71, 38-41 (1947).

[25] Sergio, D, Journal of Physics. 53, 793 (2006).

[26] R. Szabo, Phys. Rep. 378, 207-299 (2003).

[27] D. T. Jacobus. PhD, (Department of Physics, Stellenbosch University, South Africa, (2010).

[28] N. G. Deshpande, PRAMAN journal of physics. 60, 189 (2003).

[29] M. R. Vilela, Physics Lettres. 210, 232 (1996).

[30] B. Miraza and M. Mohadesi, Commun. Theor. Phys. 42, 664 (2004).

[31] Y. Yuan, K. Li, J. Wang and C. Chen, Chinese Physics C. 34(5): 543 (2010).

[32] J. Wang, K. Li and s. Dulat. Chinese Physics C. 10, 803 (2008).

[33] Abdelmadjid Maireche, Life Sci. J. 11(6), 353 (2014).

[34] Abdelmadjid Maireche, The African Rev. Phys. 9: 0060, 479-483 (2014).

[35] Abdelmadjid Maireche, J. Nano- Electron. Phys. 7 No 2, 02003 (2015).

[36] Abdelmadjid Maireche, The African Rev. Phys. 9: 0025, 185-193 (2014).

[37] Abdelmadjid. Maireche, Nonrelativistic Atomic Spectrum for Companied Harmonic Oscillator Potential and its Inverse in both NC-2D: RSP, International Letters of Chemistry, Physics and Astronomy, Vol. 56, pp.1-9, Jul. (2015).

DOI: https://doi.org/10.18052/www.scipress.com/ilcpa.56.1[38] Abdelmadjid Maireche, The African Rev. Phys. 10: 0014, 97-103 (2015).

[39] Zaim Slimane, Int J Theor Phys. 53, 2014-2023 (2014).

[40] A.E.F. Djemei and H. Smail, Commun. Theor. Phys. (Beijinig, China). 41 pp.837-844 (2004).

[41] J. Gamboa, M. Loewe and J. C. Rojas. Non- Commutative Quantum Mechanics, arXiv: hep- th/0010220v4. (2001).

[42] L. Mezincescu, Star product in quantum mechanics , arXiv: hep-th/0007046v2. (2000).

[43] Mirza B and Zarei M, Eur. Phys. J. C, 32: 583 (2004).

[44] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, (7th. ed.; Elsevier, 2007).