Paper Titles in Periodical
International Letters of Chemistry, Physics and Astronomy
Volume 58

Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 58 > Efficient and Eco-Friendly Synthesis of Fluorenone...
< Back to Volume

Efficient and Eco-Friendly Synthesis of Fluorenone Azines by Using Sulphated Titania Acid Catalyst

Full Text PDF

Abstract:

Conjugated unsymmetrical azines have been synthesized in the presence of acid catalyst sulphated-titania (TiO2-SO42-) from fluorenone hydrazone with substituted aldehydes and acetophenones by using mortar and pestle. The scope of present synthetic route avoid in solvents, simple operating method and shorter reaction time. Special feature of synthetic method is recyclable catalyst for all in reactions.

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 58)
Pages:
137-143
Citation:
V. Arun and K.R. Sankaran, "Efficient and Eco-Friendly Synthesis of Fluorenone Azines by Using Sulphated Titania Acid Catalyst", International Letters of Chemistry, Physics and Astronomy, Vol. 58, pp. 137-143, 2015
Online since:
September 2015
Export:
Distribution:
References:

[1] C.J. Li, Organic reactions in aqueous media with a focus on carbon-carbon bond formations: A decade update, Chem. Rev. 105 (2005) 3095–3165.

DOI: https://doi.org/10.1021/cr030009u

[2] M. Litvic, I. Vecenaj, Z.M. Ladisic, M. Lovric, V. Vinkovic, M.F. Litvic, First application of hexaaquaaluminium(III) tetrafluoroborate as a mild, recyclable, non-hygroscopic acid catalyst in organic synthesis: a simple and efficient protocol for the multigram scale synthesis of 3, 4-dihydropyrimidinones by Biginelli reaction, Tetrahedron. 66 (2010).

DOI: https://doi.org/10.1016/j.tet.2010.03.024

[3] C. Yue, D. Fang, L. Liu, T.F. Yi, Synthesis and application of task-specific ionic liquids used as catalysts and/or solvents in organic unit reactions, J. Mol. Liq. 163 (2011) 99–12.

DOI: https://doi.org/10.1016/j.molliq.2011.09.001

[4] B.M. Reddy, P.M. Sreekanth, V.R. Reddy, Modified zirconia solid acid catalysts for organic synthesis and transformations, J. Mol. Catal. A: Chem. 225 (2005) 71–78.

DOI: https://doi.org/10.1016/j.molcata.2004.09.003

[5] J.M. Hopkins, M. Bowdridge, K.N. Robertson, T.S. Cameron, H.A. Jenkins, J.A.C. Clyburne, Generation of Azines by the Reaction of a Nucleophilic Carbene with Diazoalkanes: A Synthetic and Crystallographic Study, J. Org. Chem. 66 (2001) 5713–5716.

DOI: https://doi.org/10.1021/jo001515b

[6] M.N. Urrutia, F.L. Alovero, C.S. Ortiz, New azine compounds as photoantimicrobial agents against staphylococcus aureus, Dyes. Pigments. 116 (2015) 27–35.

DOI: https://doi.org/10.1016/j.dyepig.2014.12.021

[7] A. Garg, J.P. Tandon, Coordination behaviour of azines towards iron (II), palladium (II) and platinum (II), Transition, Met. Chem. 13 (1988) 395–397.

DOI: https://doi.org/10.1007/bf01225136

[8] P. Tsitsa, E.A. Vyzal, S.J. Hamodrakas, E.E. Eliopoulos, A.T. Kakoulidoul, E.L. Hytiroglou, C. Roussakis, I. Chinous, A. Hempe, N. Camermanc, F.P. Ottensmeyer, D.A.V. Berghe, Synthesis, crystal structure and biological properties of a new series of lipophilic S-triazines, dihydrofolate reductase inhibitors, Eur. J. Med. Chem. 28 (1993).

DOI: https://doi.org/10.1016/0223-5234(93)90007-2

[9] I.P. Ferrer, F.H. Urena, N.A.I. Cabeza, S.B.J. Pulido, J.M.M. Martos, M.J.R. Exposito, M.N.M. Carretero, Chloro-fac-tricarbonylrhenium (I) complexes of asymmetric azines derived from 6–acetyl–1, 3, 7–trimethylpteridine-2, 4 (1H, 3H)–dione with hydrazine and aromatic aldehydes: Preparation, structural characterization and biological activity against several human tumor cell lines, J. Inorg. Biochem. 103 (2009).

DOI: https://doi.org/10.1016/j.jinorgbio.2008.09.014

[10] K.C. Murdock, R.G. Child, Y. Lin, J.D. Warren, P.F. Fabio, V.J. Lee, P.T. Izzo, S.A. Lang, R.B. Angier, R.V. Citarella, R.E. Wallace, F.E. Durr, Antitumor agents. 2. Bisguanylhydrazones of Anthracene-9, l0-dicarboxaldehydes, J . Med. Chem. 25 (1982).

DOI: https://doi.org/10.1002/chin.198241178

[11] J. Ardaraviciene, B. Barvainiene, T. Malinauskas, V. Jankauskas, K. Arlauskas, V. Getautis, Symmetrical azine-based polymers possessing 1-phenyl-1, 2, 3, 4-tetrahydroquinoline moieties as materials for optoelectronics, React. Funct. Polym. 71 (2011).

DOI: https://doi.org/10.1016/j.reactfunctpolym.2011.07.005

[12] J. Safari, S.G. Ravandi, Structure, synthesis and application of azines: a historical perspective, RSC. Adv. 4 (2014) 46224–46249.

DOI: https://doi.org/10.1039/c4ra04870a

[13] H. Mailer, S. Laskos, Azine liquid crystal compounds for use in light-control devices, Patent , US 4196975 A.

[14] R. Glaser, N. Knotts, P. Yu, L. Li, M. Chandrasekhar, C. Martinb, C.L. Barnes, Perfect polar stacking of parallel beloamphiphile layers. Synthesis, structure and solid-state optical properties of the unsymmetrical acetophenone azine DCA, Dalton. Trans. (2006).

DOI: https://doi.org/10.1039/b515739k

[15] C. McLoughlin, J.A.C. Clyburne, N. Weinberg, Azines: conjugation stoppers or conjugation switches, J. Mater. Chem. 17 (2007) 4304–4308.

DOI: https://doi.org/10.1039/b706964b

[16] A. Hashidzume, J. Shiota, Y. Ueno, T. Noda, Y. Takashima, A. Harada, M. Kamachi, Polymer formation utilizing crisscross, addition (crisscross addition polymerization) of acetaldehyde azine and 1, 4-phenylene diisocyanate, Polymer. 47 (2006).

DOI: https://doi.org/10.1016/j.polymer.2005.11.056

[17] R.R. Karimia, H.L. Khouzani, Synthesis of new azines in various reaction conditions and investigation of their cycloaddition reaction, J. Iran. Chem. Soc. 8 (2011) 223–230.

DOI: https://doi.org/10.1007/bf03246219

[18] H.L. Khouzani, M.M.M. Sadeghi, J. Safari, O.S. Fini, Synthesis of azines from carbonyl compounds in a solvent-free condition, J. Sci. I. R. Iran. 12 (2001) 233–235.

[19] B. Lee, K.H. Lee, J. Cho, W. Nam, N.H. Hur, Synthesis of azines in solid state: reactivity of solid hydrazine with aldehydes and ketones, Org. Lett. 13 (2011) 6386–6389.

DOI: https://doi.org/10.1021/ol202593g

[20] M. Lewis, R. Glaser, The azine bridge as a conjugation stopper: An NMR spectroscopic study of electron delocalization in acetophenone, J. Org. Chem. 67 (2002) 1441–1447.

DOI: https://doi.org/10.1021/jo011117o

[21] C.H. Stapfer, Azines and hydrazones as paint drier accelerators, Patent, US 3630962 A.

[22] K.K. Kononowicz, X. Ligneau, H. Stark, J.C. Schwartz, W. Schunack, Azines and diazines as potential histamine H3-receptor antagonists, Arch. Phm. 328 (1995) 445–450.

DOI: https://doi.org/10.1002/ardp.19953280509

[23] V. Bertolasi, O. Bortolini, G. Fantin, M. Fogagnolo, D. Perrone, Preparation and characterization of some keto-bile acid azines, steroids. 72 (2007) 756–764.

DOI: https://doi.org/10.1016/j.steroids.2007.06.005

[24] M.H. Sarvari, E. Safary, Nano-sulfated titania (TiO2/SO42−) as a new solid acid catalyst for Friedel-Crafts acylation and Beckman rearrangement in solvent-free conditions, J. Sulfur. Chem. 32 (2011) 463–473.

DOI: https://doi.org/10.1080/17415993.2011.600313

[25] K.R.P.S. Devi1, P.B. Sreeja, S. Sugunan, Environmentally benign Friedel-Crafts benzylation over nano-TiO2-SO42−, Int. Nano. Lett. 3: 40 (2013) 2–8.

DOI: https://doi.org/10.1186/2228-5326-3-40

[26] M.H. Sarvari, E. Sodagar, M.M. Doroodmand, Nano sulfated titania as solid acid catalyst in direct synthesis of fatty acid amides, J. Org. Chem. 76 (2011) 2853–2859.

DOI: https://doi.org/10.1021/jo2002769

[27] B. Krishnakumar, M. Swaminathan, An expeditious and solvent free synthesis of azine derivatives using sulfated anatase-titania as a novel solid acid catalyst, Catal. Commun. 16 (2011) 50–55.

DOI: https://doi.org/10.1016/j.catcom.2011.08.029

[28] B. Krishnakumar, R. Velmurugan, M. Swaminathan, TiO2–SO42− as a novel solid acid catalyst for highly efficient, solvent free and easy synthesis of chalcones under microwave irradiation, Catal. Commun. 12 (2011) 375–379.

DOI: https://doi.org/10.1016/j.catcom.2010.10.015

[29] B. Krishnakumar, M. Swaminathan, A convenient method for the N-formylation of amines at room temperature using TiO2-P25 or sulfated titania, J. Mol. Catal. A: Chem. 334 (2011) 98–102.

DOI: https://doi.org/10.1016/j.molcata.2010.11.002

[30] M.H. Sarvari, S.N. Derikvandi, A. Jarrahpour, R. Heiran, Nano sulfated titania as a heterogeneous solid acid catalyst for the synthesis of pyrroles by clauson-kaas condensation under solvent-free conditions, Chem. Heterocycl. Compd. 49 (2014).

DOI: https://doi.org/10.1007/s10593-014-1425-3

[31] A.I. Vogel, A Text Book of Practical Organic Chemistry, third edn, ELBS Longman, London, 1975, p.491–512.

[32] J.L.R. Vega, A.A. Perez, R. Gomez, M.E.N. Gomez, Sulfated titania [TiO2/SO42−]: A very active solid acid catalyst for the esterification of free fatty acids with ethanol, Appl. Catal. A-Gen. 379 (2010) 24–29.

DOI: https://doi.org/10.1016/j.apcata.2010.02.020
Show More Hide
Cited By:
This article has no citations.