Paper Titles in Periodical
International Letters of Chemistry, Physics and Astronomy
ILCPA Volume 57

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > ILCPA Volume 57 > Malononitrile: A Versatile Active Methylene Group
< Back to Volume

Malononitrile: A Versatile Active Methylene Group

Full Text PDF


The title role of malononitrile in the development of Knoevenagel condensation of organic synthesis and their new findings are explored in this review. The active methylene group of malononitriles is very important attacking part in the heterocyclic conversions and also having a great potency towards several microbial and biological systems.


International Letters of Chemistry, Physics and Astronomy (Volume 57)
R. S. Dhivare and S.S. Rajput, "Malononitrile: A Versatile Active Methylene Group", International Letters of Chemistry, Physics and Astronomy, Vol. 57, pp. 126-144, 2015
Online since:
August 2015

Lin Z., Zhang W., Wang L., Yu H. and Wu C., Mechanism of the synergistic toxicity of malononitrile and p -nitrobenzaldehyde with photobacterium phosphoreum, Toxicology mechanism and methods, 13(4), (2003), 241-245.

Hussein A. H. M., Gad-Elkareem M. A. M., El-Adasy A. A. A. M., Khames A. A., and Othman I. M. M., β-oxoanilides in heterocyclic synthesis: synthesis and antimicrobial activity of pyridines, pyrans, pyrimidines and azolo, azinopyrimidines incorporating antipyrine moiety, International Journal of Organic Chemistry, 2, (2012).

Al-Adiwish W. M., Yaacob W. A., Adan D. and Nazlina I., Synthesis and antibacterial activity of thiophenes, International Journal on Advanced Science Engineering Information Technology, 2(4), (2012), 27-30.

Mandour A. H., El-Sawy E. R., Ebaid M. S. and Hassan S. M., Synthesis and potential biological activity of some novel 3-[(N-substituted indol-3-yl)methyleneamino]-6-amino-4aryl-pyrano(2, 3-c)pyrazole-5-carbonitriles and 3, 6-diamino-4-(N-substituted indol-3yl)pyrano(2, 3-c)pyrazole-5-carbonitriles, Acta Pharm, 62, (2012).

Mungra D. C., Patel M. P. and Patel R. G., An efficient one-pot synthesis and in vitro antimicrobial activity of new pyridine derivatives bearing the tetrazoloquinoline nucleus, ARKIVOC, xiv, (2009), 64-74.

Rao M. S., Chhikara B. S., Tiwari R., Shirazi A. N., Parang K. and Kumar A., A greener synthesis of 2-aminochromenes in ionic liquid and evaluation of their anti-proliferative activities, Chemistry and Biology Interface, 2(6), (2012), 362-372.

El-Shekeil A., Obeid A. O. and Al-Aghbari S., Anticancer activity studies of some cyclic benzimidazole derivatives, European Journal of Chemistry, 3(3), (2012), 356-358.

Hassaneen H. M., Abunada N. M. and Hassaneen H. M., Synthesis of some new indeno[1, 2e]pyrazolo[5, 1-c]-1, 2, 4-triazin-6-one and indeno[2, 1-c]pyridazine-4-carbonitrile derivatives, Natural Science, 2, (2010), 1349-1355.

Niranjane K. D. and Kale M. A., Synthesis and anti-inflammatory activity of some novel derivatives of 2-amino-3-cyano-14-imino-10-methoxy-4-methylthio pyrimido [2, 1-b] pyrazolo [4, 5-d] pyrimido [2, 1-b] benzothiazole, Der Pharmacia Lettre, 3(2), (2011).

Fadda A. A., Berghot M. A., Amer F.A., Badawy D.S. and Bayoumy N.M., Synthesis and Antioxidant and Antitumor Activity of Novel Pyridine, Chromene, Thiophene and Thiazole Derivatives, Archiv Der Pharmazie, 345(5), (2012), 378-385.

El-fiky B. A., Aly S. A., El-Sayed I. H., El-Abd S. F. and Abo-Ella S. S., Study the Antitumor Activity of Copper (II) Complex of 4-Azomalononitrile Antipyrine on Mice Induced with Earlich Ascites Carcinoma Cells, Journal Environmental Bioremediation and Toxicology, 2(2), (2014).

Deng H., Hu H., He M., Hu J., Niu W., Ferrie A. M. and Fang Y., Discovery of 2-(4Methylfuran-2(5H)-ylidene)malononitrile and Thieno[3, 2-b]thiophene-2-carboxylic Acid Derivatives as G Protein-Coupled Receptor 35 (GPR35) Agonists, J. Med. Chem., 54, (2011).

Dove M. T., Farelly G., Rae A. I. M. and Wright L., The re-entrant phase transitions in malononitrile: specific heat capacity measurements, J. Phys. C: Solid State Phys., 16, (1983), L195-Ll98.

Binev Y. I., Tsenov J. A., Juchnovski I. N. and Binev I. G., Ab initio, DFT and experimental studies on the IR spectra and structure propanedinitrile (malononitrile) and its carbanion, Journal of Molecular Structure (Theo-chem), 625, (2003).

Uchida S., Tabayashi K., Tanaka M., Takahashi O., Saito K., Kono M. and Ibuki T., Photoabsorption and fluorescence excitation of malononitrile in the vacuum UV region, Chemical Physics Letters, 282, (1998), 375-380.

Wang G. and Cheng G., Solvent free and aqueous Knoevenagel condensation of aromatic ketones with malononitrile, ARKIVOC, ix, (2004), 4-8.

Gupta R., Gupta M., Paul S. and Gupta R., Silica supported ammonium acetate: an efficient and recyclable heterogeneous catalyst for Knoevenagel condensation between aldehydes or ketones and active methylene group in liquid phase, Bull. Korean Chem. Soc., 30(10), (2009).

Elison M. N., Feducovich S. K., Lizunova T. L. and Nikishin G. I., Electro chemical transformation of malononitrile and carbonyl compounds into functionally substituted cyclopropanes: Electrocatalytic variant of the Widevist reaction, Tetrahedron, 56, (2000).

Bhuiyan M. M. H., Hossain M. I., Ashraful A. M. and Mahmud M. M., Microwave assisted Knoevenagel condensation: synthesis and antimicrobial activities of some arylidenemalononitriles, Scientific Journals, Chemistry Journal, 02(01), (2012), 30-36.

Sheibani H. and Saljoogi A. S., A high-speed and eco-friendly catalytic system for knoevenagel condensation of aldehydes with malononitrile and ethylcyanoacetate in aqueous media, Heteroletters, 2(4), (2012), 389-393.

Rajendran A., Karthikeyan C. and Rajathi K., An efficient synthesis of arylmethylidene derivatives promoted by pyridinium salyicylate ionic liquid, International Journal of ChemTech Research, 3(2), 2011, 858-863.

Pal R., Visible light induced Knoevenagel condensation: A clean and efficient protocol using aqueous fruit extract of tamarindus indica as catalyst, International Journal of Advanced Chemistry, 2 (1), (2014), 27-33.

Pasha M. A., Manjula K. and Jayashankara V. P., Sodium carbonate: A versatile catalyst for Knoevenagel condensation, Indian Journal of Chemistry, 49B, (2010), 1428-1431.

Tamami B. and Fadavi A., A Polymeric Heterogeneous Catalyst Based on Polyacrylamide for Knoevenagel Reaction in Solvent Free and Aqueous Media, Iranian Polymer Journal, 15 (4), (2006), 331-339.

Lin Q., Chen. P., Fu. Y., Zang Y., Shi B., Zang P. and Wei T., A green synthesis of simple chemosensor that could instantly detect cyanide with high selectivity in aqueous solution, Elesevier, Chinese Chemical Letters, 24, (2013), 699-702.

Basude M., Sunkara P. and Puppala V. S., ZnO catalyst for Knoevenagel condensation in aqueous medium at ambient temperature, Journal of Chemical and Pharmaceutical Research, 5(9), (2013), 46-50.

Jain S., Bhimireddy N. R. and Kolisetty S. R., L-proline catalyzed Knoevenagel condensation: Synthesis of some new indole derivatives and Biological activities, International Journal of ChemTech Research, 3(2), (2011), 817-824.

Gutch P. K., Kumar P., Suryanarayana M. V. S. and Malhotra R.C., Structure-biological Activity Relationship of Analogues of 2-Chlorobenzylidenemalononitrile-A Riot-control Agent, Defense Science Journal, 55(4), (2005), 447-457.

Gouda M. A. and Abu-Hashem A. A., An eco-friendly procedure for the efficient synthesis of arylidinemalononitriles and 4, 4'-(arylmethylene)bis(3-methyl-1-phenyl-1H-pyrazol-5-ols) in aqueous media, Green Chemistry Letters and Reviews, 5(2), (2012).

Riyaz S. D., Indrasena A., Naidu A. and Dubey P. K., Knovenagel condensation of isatin with nitriles and 1, 3-diketones, Indian Journal of chemistry, 53B, (2014), 120-123.

Lashgari N., Ziarani G. M., Badiei A. and Gholamzadeh P., Knoevenagel condensation of isatins with malononitrile/ethyl cyanoacetatein the presence of sulfonic acid functionalized silica (SBA-Pr-SO3H) as a new nano-reactor, European Journal of Chemistry, 3(3), (2012).

Katritzky A. R., Fan W., Liang D. and Li ., Novel dyestuffs containing dicyanomethylidene groups, Novel Dyestuffs, University of Florida, 26, (1989), 1541-1545.

Andrew T. L., Cox J. R. and Swager T. M., Synthesis, Reactivity and Electronic properties 6, 6-dicyanofulvenes, American Chemical Society, Organic Letters, 12(22), (2010), 53025305.

Taherkhani M., Microwave-assisted one-pot synthesis of two derivatives of indenobenzoquinoxaline under solvent free conditions, Int. J. Res. Chem. Environ., 2(4), (2012), 215-219.

Asiri A. M., Synthesis and absorption spectral properties of bis-methine dyes exemplified by 2, 5-bis-arylidene-1-dicyanomethylene-cyclopentanone, Journal of chemical Society of Pakistan, 26(1), (2004), 57-60.

Sidhu A., Sharma J.R. and Rai M., Chemoselective reaction of malononitrile with imine-ones and antifungal potential of products, Indian Journal of Chemistry, 49B (2), (2010), 247-250.

Hammam A. S., Abdel-Rahman M. A. and Hassan A. A., Synthesis and Characterization of Pyrrolo[2, 3-f] Indole-3, 7-Dicarbonitriles, International Journal of Advance in Medical Science (AMS), 1(1), (2013), 11-17.

Diez-Barra E., Hoz. A. de la, Moreno A. and Sanchez-Verdu P., Phase transfer catalysis without solvent: selective mono- or di-alkylation of malononitrile, J. Chem. Soc. Perkin Trans. 1, 1991, 2589-2592.

Jeyachandran M. and Shriram K., Synthesis Of Antibacterial Ethyl 3-Aryl/Alkyl-2(1Htetrazole-5-Yl)Enoates and 5, 5'-(2-Arylalkene-1, 1-Diyl)Bis (1Htetrazoles), International Journal of Applied Biology and Pharmaceutical Technology, 2(2), (2011).

Dodiya D. K., Trivedi A. R., Jarsania S. H., Vaghasia S. J. and Shah, V. H., Characterization and biological evaluation of some novel pyrazolo[3', 4': 4, 5]thieno[2, 3-d]pyrimidin-8-ones synthesized via the Gewald reaction, J. Serb. Chem. Soc., 73 (7), (2008).

Dandia A., Singh R., Sachdeva H., Gupta R. and Paul S., Microwave promoted and improved thermal synthesis of Spiro-[indole-pyranobenzopyrans] and Spiro-[indole-pyranoimidazoles], Journal of Chinese Chemical Society, 50, (2003), 273-278.

Abdel-Megid M., Ahmed Ibrahim M., Gabr, El-Gohary N. M. and El-Hossain Y. A., Synthesis and Antimicrobial Activity of Some New Nitrogen Bridge-head Pyrido[1, 2b][1, 2, 4]triazepines Incorporating 6-Methylchromone Moiety, 15th International Electronic Conference on Synthetic Organic Chemistry (ECSOC-15), 2011, 1-30.

Jaberi Z. K. and Pooladian B., A facile synthesis of new 2-amino-4H-pyran-3-carbonitriles by a one pot reaction of α, α'-bis(arylidene) cycloalkanones and malononitrile in the presence of K2CO3, The Scientific World Journal, (2012), 1-5.

Manikannan R., Muthusubramanian S., Yogeeswari P. and Sriram D., Selective one-pot multicomponent synthesis and anti-tubercular evaluation of 5-(aryl/cyclohexylsulfanyl)-2alkoxy-4, 6-diarylnicotinonitriles, Bioorganic and Medicinal Chemistry Letters, 20, (2010).

Shi F., Tu S., Fang F. and Li T., One-pot synthesis of 2-amino-3-cyanopyridine derivatives under microwave irradiation without solvent, ARKIVOC, (i), (2005), 137-142.

Datta B. and Pasha M. A., I2/K2CO3: An efficient catalyst for the synthesis of 5-aryl-2, 6dicyano-3-methylanilines, J. Chem. Sci., 125(2), (2013), 291-294.

Desale K. R., Nandre K. P. and Patil S. L., p-Dimethylaminopyridine (DMAP): A highly efficient catalyst for one pot, solvent free synthesis of substituted 2-amino-2-chromenes under microwave irradiation, Org. Commun., 5(4), (2012), 179-185.

Beheshtia Y. S., Khorshidi M., Heravi M. M. and Baghernejad B., DABCO as a novel and efficient catalyst for the synthesis of pyridine dicarbonitriles, Journal of Scientific Research and Reviews, 2(3), (2013), 030-033.

Heravi M. M., Baghernejad B. and Oskooie H. A., A Novel and Efficient Catalyst to One-pot Synthesis of 2-Amino-4H-chromenes by Methanesulfonic Acid, Journal of the Chinese Chemical Society, 55, (2008), 659-662.

Hasaninejad A., Jafarpour N. and Mohammadnejad M., Synthesis of Benzo[b]pyrane Derivatives Using Supported Potassium Fluoride as an Efficient and Reusable Catalytic System, E-Journal of Chemistry, 9(4), (2012), 2000-(2005).

Sayed A. A. and Maddahi M., Synthesis of 2-Amino-4hydroxy-1H-pyrrole-3-carbonitrile from Glycine under Microwave Irradiation, International journal of Advanced Biological and Biomedical Research, 1(11), (2013), 1364-1367.

Ghodsi Mohammadi Ziarani, Sakineh Faramarzi, Shima Asadi, Alireza Badiei, Roya Bazl and Massoud Amanlou, Three-component synthesis of pyrano[2, 3-d]-pyrimidine dione derivatives facilitated by sulfonic acid nanoporous silica (SBA-Pr-SO3H) and their docking and urease inhibitory activity, DARU Journal of Pharmaceutical Sciences, 21(3), (2013).

Kibou Z., Cheikh N., Choukchou-Braham N., Mostefa-Kara B., Benabdellah M. and Villemin D., A new route for the synthesis of 2-aminopyridines, St. Cerc. St. CICBIA, 12 (2), (2011), 121-126.

Khalafy J., Rimaz M., Farajzadeh S. and Ezzati M., A Simple Three-component Synthesis of 3-Amino-5-arylpyridazine-4-carbonitriles, S. Afr. J. Chem., 66, (2013), 179-182.

Kiyani H., Samimi H. A., Ghorbani F. and Esmaieli S., One-pot, four-component synthesis of pyrano[2, 3-c]pyrazoles catalyzed by sodium benzoate in aqueous medium, Current Chemistry Letters, 2, (2013), 197-206.

Danish I. A. and Prasad K. J. R., An Elegant Synthetic Route to 3-Cyano-5, 6-dihydro-2ethoxy-4-phenyl-pyrido[2, 3-a]carbazoles, Z. Naturforsch, 59b, (2004), 106-108.

Varela J. A., Castedo L. and Saa C., One-step synthesis of spiropyridines, a novel class of C2symmetric chiral ligands, by cobalt(i)-catalyzed [2 + 2 + 2] cycloadditions between bisalkynenitriles and alkynes, Organic Letters, 1(13), (1999).

El-Emary T. I., Ahmed R. A. and Bakhite E. A., Synthesis of Some New Spiro, Isolated and Fused Heterocycles Based on 1H-indole-2-one, Journal of the Chinese Chemical Society, 48, (2001), 921-927.

Makarem S., Mohammadi A. A. and Fakhari A. R., A multi-component electro-organic synthesis of 2-amino-4H-chromenes, Tetrahedron Letters, 49, (2008), 7194-7196.

Fringuelli F., Piermatti O. and Pizzo F., One-Pot Synthesis of 7-Hydroxy-3-carboxycoumarin in Water, Journal of Chemical Education, 81(6), (2004), 874-876.

Hammam A. E. G., Sharaf M. A. and El-Hafez N. A., Synthesis and anticancer activity of pyridine and thiazolopyrimidine derivatives using 1-ethylpiperidone as a synthon, Indian Journal of Chemistry, 40 (B), (2001), 213-221.

Shaker R. M., Mahmoud A. F. and Abdel-Latif, Facile one pot microwave assisted solventfree synthesis of novel spiro- f. f. fused pyran derivatives via the three-component condensation of ninhydrin with malononitrile and active methylene compounds, Journal of the Chinese Chemical Society, 52, (2005).

Rajput S. S., Synthesis and Characterization of Bis-Heteroyclic derivatives of 1-(3Chlorophenyl)-Pyrrolidine-2, 5-Dione, International Journal of Advances in Pharmacy, Biology and Chemistry, 1(2), (2012), 242-246.

Ameta K.L., Rathore N.S. and Kumar B., Synthesis of some novel chalcones and their facile one-pot conversion to 2-aminobenzene-1, 3-dicarbonitriles using malononitrile, Analele University Din Bucuresti-Chimie (Serie Noua), 20(1), (2011), 15-24.

Show More Hide
Cited By:

[1] L. Tu, J. Liu, Z. Zhang, Q. Qi, S. Yao, W. Huang, "A Michael addition reaction-based fluorescent probe for malononitrile detection and its applications in aqueous solution, living cells and zebrafish", The Analyst, 2021


[2] M. Abaee, A. Hatamifard, M. Mojtahedi, B. Notash, S. Naderi, "Pseudo-five-component organocatalyzed synthesis of dicyanoanillines using only malononitrile and aromatic aldehydes", Synthetic Communications, p. 1, 2022


[3] M. Abaee, A. Hatamifard, M. Mojtahedi, B. Notash, S. Naderi, "Pseudo-five-component organocatalyzed synthesis of dicyanoanillines using only malononitrile and aromatic aldehydes", Synthetic Communications, Vol. 52, p. 346, 2022