Paper Titles in Periodical
International Letters of Chemistry, Physics and Astronomy
Volume 56

Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 56 > Nonrelativistic Atomic Spectrum for Companied...
< Back to Volume

Nonrelativistic Atomic Spectrum for Companied Harmonic Oscillator Potential and its Inverse in both NC-2D: RSP

Full Text PDF

Abstract:

A novel study for the exact solvability of nonrelativistic quantum spectrum systems for companied Harmonic oscillator potential and its inverse (the isotropic harmonic oscillator plus inverse quadratic potential) is discussed used both Boopp’s shift method and standard perturbation theory in both noncommutativity two dimensional real space and phase (NC-2D: RSP), furthermore the exact corrections for the spectrum of studied potential was depended on two infinitesimals parameters θ and θ¯ which plays an opposite rolls, this permits us to introduce a new fixing gauge condition and we have also found the corresponding noncommutative anisotropic Hamiltonian.

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 56)
Pages:
1-9
Citation:
A. Maireche "Nonrelativistic Atomic Spectrum for Companied Harmonic Oscillator Potential and its Inverse in both NC-2D: RSP", International Letters of Chemistry, Physics and Astronomy, Vol. 56, pp. 1-9, 2015
Online since:
Jul 2015
Export:
Distribution:
References:

[1] H. Hassanabadi, et al, International Journal of the Physical Sciences, 2011, 6 (3), 583.

[2] S. K. Bose, IL NUOVO CIMENTO, 1994, 109, 1217.

[3] L. Buragohai and S. A. Ahmed, Lat. Am. J. Educ, 2009, 3, 573.

[4] S. K. Bose, IL NUOVO CIMENTO, 1994, 109B, N. 3, 311.

[5] I. Sameer and S. Ramazan, CEJP. 2007, 5, 4, 516.

[6] E. S. Santos and G. R. Melo, IJP, 2011, 50, 332.

[7] Tapas Das, Subhankar Ray and Altug Arda, Exact Solution of N-dimensional Radial Schrödinger Equation with Pseudoharmonic Potential via Laplace Transforme Approach. arXiv: 1308. 5295v1 (math-ph) (2013).

DOI: https://doi.org/10.1155/2015/137038

[8] A. E. F. Djema and H. Smail. Commun, Theor. Phys, 2004, 41, 837.

[9] Shi-Hai and S. Guohuo, Foundation of Physics Letters, 2003, 16, 357.

[10] Shi-Hai D, Int J Theor Phys, 2000, 39, 4, 1119-1128.

[11] Shi-Hai, D., Foundations of physics Letters, 2002, 15, 4, 385-395.

[12] Shi-Ha, i D, Int J Theor Phys, 2001, 40, 2, 559-567.

[13] Shi-Hai, D.; Guo-Huo, S, Foundation of Physics Letters, 2003, 16, 357-367.

[14] L. Buragohain and, S. A.S. Ahmed, Lat. Am. J. Phys. Educ, 2010, 4, 1.

[15] Anjana, Sinha, Int J Theor Phys, 1998, 37, 7, 2055-(2065).

[16] Akpan N., Eno J. Ibango, Oladunjoye A. Awoga, Louis E. Akpabio and Akaninyene D. Antia. Journal of Modern Physics, 2012 3, 1849-1855.

DOI: https://doi.org/10.4236/jmp.2012.312232

[17] O.M. Al-dossary. International journal of quantum Chemistry, 2006, Vol 107, No 10, 547.

[18] C. B. Compean and M. Kirchbach, Journal of physics A, 2007, Vol 39, No 3, p.2040-(2046).

[19] A. Connes. Noncommutative geometry, 1st ed. (Academic Press, Paris, France, 1994).

[20] H. Snyder, Phys. Rev, 1947, 71, 38-41.

[21] Sergio, D., Journal of Physics, 2006, 53, 793.

[22] R. Szabo, Phys. Rep, 2003, 378, 207.

[23] D. T. Jacobus. PhD, (Department of Physics, Stellenbosch University, South Africa, 2010).

[24] N. G. Deshpande, PRAMAN journal of physics, 2003, 60, 189.

[25] M. R. Vilela. Physics Lettres, 210, 232 (1996).

[26] B. Miraza and M. Mohadesi, Commun. Theor. Phys, 2004, 42, 664.

[27] Y. Yuan, K. Li, J. Wang and C. Chen. Chinese Physics C, 2010, 34(5): 543.

[28] J. Wang, K. Li and s. Dulat, Chinese Physics C, 2008, 10, 803.

[29] Abdelmadjid  Maireche, Life Sci. J. 2014, 11(6), 353.

[30] Abdelmadjid  Maireche, The African Rev. Physics. 2014, 9: 0060, 479.

[31] Abdelmadjid Maireche. J. Nano- Electron. Phys, 2015, 7 No 2, 02003.

[32] Abdelmadjid Maireche, The African Rev. Physics, 2014, 9: 0025.

[33] Zaim Slimane, Int J Theor Phys, 2014, 53, 2014-(2023).

[34] A.E.F. Djemei and H. Smail. Commun, Theor. Phys. (Beijinig, China), 2004, 41 pp.837-844.

[35] J. Gamboa, M. Loewe and J. C. Rojas. Non- Commutative Quantum Mechanics. arXiv: hep- th/0010220v4. (2001).

[36] L. Mezincescu, Star product in quantum mechanics. arXiv: hep-th/0007046v2. (2000).

[37] Mirza B, Zarei M., Eur. Phys. J. C, 2004, 32: 583.

[38] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, (7th. ed.; Elsevier, USA 2007).

Show More Hide