Paper Titles in Periodical
International Letters of Chemistry, Physics and Astronomy
Volume 55

Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 55 > Numerical Study of Thermal Stresses for the...
< Back to Volume

Numerical Study of Thermal Stresses for the Semiconductor CdZnTe in Vertical Bridgman

Full Text PDF

Abstract:

The aim of this work is to present a numerical simulation of thermal stress in directional solidification of CdZnTe in vertical Bridgman apparatus. Especial attention will be attributed to show the importance of cooling temperature and time’s growth affecting the thermal stress. Furthermore, we will focus on investigating the thermal stress’ components and their distribution in crystal, which gives a detailed about the stress distribution and consequently on the distribution of defects during solidification of CdZnTe.

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 55)
Pages:
66-78
DOI:
10.18052/www.scipress.com/ILCPA.55.66
Citation:
H. Jamai et al., "Numerical Study of Thermal Stresses for the Semiconductor CdZnTe in Vertical Bridgman", International Letters of Chemistry, Physics and Astronomy, Vol. 55, pp. 66-78, 2015
Online since:
Jul 2015
Export:
Distribution:
References:

[1] R. B James, P Siffert, Eds. 11th International Workshop on Room Temperature Semiconductors and Associated Electronics. Nucl. Instrum. Methods Phys. Res. A 2001, 458, 1-603.

[2] Phlips, B., Ed. 15th International Workshop on Room-Temperature Semiconductor X- and Gamma-Ray Detectors. IEEE Nucl. Sci. Symp. Conf. Rec. 2006, 6, 3585-393.

[3] P.Z. Gao, S.L. Liu, W. K Chow, N.K. Fong, Large eddy simulation for studying tunnel smoke ventilation, Tunneling and underground Technology. 2004; 19, pp.577-586.

DOI: 10.1016/j.tust.2004.01.005

[4] K.S. Doan, M. Stage, J. Coutanceau, Transferts de chaleur entre un fil anémométrique court et un écoulement permanent à faible vitesse, Rev. Gén. Therm. 1975; 168, 951-956.

[5] K.S. Doan, M. Stage, J. Coutanceau, Transferts de chaleur entre un fil anémométrique court et un écoulement permanent à faible vitesse, Rev. Gén. Therm. 1975; 168, 951-956.

[6] Abbene, L.; La Manna, A.; Fauci, F.; Gerardi, G.; Stumbo, S.; Raso, G. X-ray spectroscopy and dosimetry with a portable CdTe device. Nucl. Instrum. Methods Phys. Res. A 2007, 571, 373- 377.

DOI: 10.1016/j.nima.2006.10.112

[7] Miyajima, S.; Imagawa, K.; Matsumoto, M. CdZnTe detector in diagnostic x-ray spectroscopy. Med. Phys. 2002, 29, 1421-1429.

DOI: 10.1118/1.1485975

[8] Miyajima, S. Thin CdTe detector in diagnostic x-ray spectroscopy. Med. Phys. 2003, 30, 771-777.

DOI: 10.1118/1.1566388

[9] Bottigli, U.; Golosio, B.; Masala, G.L.; Oliva, P.; Stumbo, S.; Delogu, P.; Fantacci, M.E.; Abbene, L.; Fauci, F.; Raso, G. Comparison of two portable solid state detectors with an improved collimation and alignment device for mammographic x-ray spectroscopy. Med. Phys. 2006, 33, 3469-3477.

DOI: 10.1118/1.2229431

[10] Fang H. S, Wanga S., Zhou L, Zhou N. G, Lin M. H , Influence of furnace design non the thermal stress during directional solidification of multicrystalline silicon, Journal of Crystal Growth 346 (2012)5–11.

DOI: 10.1016/j.jcrysgro.2012.02.032

[11] Huang C. E, Elwell D, and Feigelson R. S, J. Journal of Crystal Growth 69 (1984) 275.

[12] Huang C. E, Elwell D, and Feigelson R. S, J. Journal of Crystal Growth 64 (1984) 441.

[13] C.K. Chao, S.Y. Hung, Stress analysis in the vertical Bridgman growth with the modified thermal boundary condition, Journal of Crystal Growth 256 (2003) 107–115.

DOI: 10.1016/s0022-0248(03)01353-8

[14] W. Rosch, F. Carlson, J. Crystal Growth 109 (1991) 75.

[15] H.S. Fang, S. Wang, L. Zhou, N. G. Zhou, M.H. Lin, Influence of furnace design on thermal stress during directional solidification of multicristalline silicon, J. Crystal Growth 346 5-11 (2012).

DOI: 10.1016/j.jcrysgro.2012.02.032

[16] J.J. Derby, D. Gasperino, Computational models for crystal growth of radiation detector materials: growth of CZT by the EDG method, in: D. Perry, A. Burger, L. Franks, M. Schieber (Eds. ), Nuclear Radiation Detection Materials, Materials Research Society Symposium Proceedings, vol. 1038, 2008, p.1038.

DOI: 10.1557/proc-1038-o05-09

[17] A. Datta, K. Jones, S. Swain, K. Lynn, Modified vertical Bridgman growth of Cd1-xZnxTe detector grade crystal in a 4 inch EDG furnace, in: Nuclear Science Symposium Conference Record (NSS/MIC), 2009 IEEE, 2009, p.1771–1776.

DOI: 10.1109/nssmic.2009.5402202

[18] D.J. Gasperino, Modeling of Transport Processes during Solution, Melt and Colloidal Crystal Growth, Ph.D. Thesis, University of Minnesota, (2008).

[19] Parfeniuk C., F. Weinberg and I. V. Samarasekera, J. Crys. Growth 119, 261 (1992).

[20] L. Juncheng, Science in China Ser. E 47, 725 (2004).

[21] Marchenko Marina, P., Vladimir, D., Golyshev , Bykova Svetlana, V. , Investigation of Cd1-xZnxTe composition inhomogeneity at crystal growth by AHP-method , Journal of Crystal Growth 303 (2007) 193–198.

DOI: 10.1016/j.jcrysgro.2006.11.254

[22] Fainberg J, Leister H. J, Comput. Methods Appl. Mech. Eng. 137 (2) (1996) 167.

[23] Fang H. S, Wang S, Zhou L, Zhou N. G, Lin M. H, Influence of furnace design on the thermal stress during directional solidification of multicrystalline silicon, Journal of Crystal Growth 346 (2012) 5– 11.

DOI: 10.1016/j.jcrysgro.2012.02.032

[24] Chao C. K, Hung S. Y, Stress analysis in the vertical Bridgman growth with the modified thermal boundary condition, Journal of Crystal Growth 256 (2003) 107–115.

DOI: 10.1016/s0022-0248(03)01353-8

[25] Juncheng Liu and Guodong Zhang, Numerical Simulation of the Thermal Stress Field during Vertical, Journal of the Korean Physical Society, Vol. 53, No. 5, November 2008, pp.2989-2995.

DOI: 10.3938/jkps.53.2989

[26] C. Cerny, A. Kalbac, P. Prikryl, Computational modeling of CdZnTe crystal growth from the melt, Computational Materials Science 1734-60(2000).

DOI: 10.1016/s0927-0256(99)00089-0

[27] N. Zhang, A. Yeckel, J. J. Derby, Maintaining convex interface shapes during electrodynamic gradient freeze growth of cadmium zinc telluride using a dynamic, bell-curve furnace profile, J. Cryst. Growth 355 113-121 (2012).

DOI: 10.1016/j.jcrysgro.2012.06.042

[28] Juncheng liu and Guodong Zhang (2008): Numerical simulation of the thermal stress field during vertical Bridgman CdZnTe single crystal growth, Journal of the Korean Physical Society, Vol. 53, No. 5, p.29892995.

DOI: 10.3938/jkps.53.2989

[29] A. Shimizu, J. I. Nishizawa, Y. Oyama and K. Suto (2002) , J Cryst Growth 237-239, 1697.

[30] Ben meddour Amor (2010): Etude et simulation numériques des contraintes thermomécaniques dans le silicium photovoltaïque. Thèse pour obtenir le grade de Docteur en Sciences spécialité « Génie Mécanique.

[31] J. Volkl, G. Muller (1989): A new model for the calculation of dislocation formation in semiconductor melt growth by taking into account the dynamics of plastic deformation, J. Crystal Growth 97 136-145.

DOI: 10.1016/0022-0248(89)90255-8
Show More Hide