Paper Titles in Periodical
International Letters of Chemistry, Physics and Astronomy
ILCPA Volume 55

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > ILCPA Volume 55 > Novel Approach to Direct Adaptive Fuzzy Control...
< Back to Volume

Novel Approach to Direct Adaptive Fuzzy Control Applied to the Asynchronous Machine

Full Text PDF


This paper presents an advanced direct adaptive fuzzy control for asynchronous machine which uses the theory of approximation and the theory of Lyapunov to establish a parametric adaptation law ensuring the stability and boundedness of all the control signals and the tracking error. In the direct approach, the fuzzy system is used to describe directly the control law and the parameters of the fuzzy system are directly adjusted to achieve the control objectives. Through the obtained results, stable direct adaptive fuzzy control generalized has proved a great effectiveness and a strong robustness in the presence of parameter variations and disturbances.


International Letters of Chemistry, Physics and Astronomy (Volume 55)
M. Fodil et al., "Novel Approach to Direct Adaptive Fuzzy Control Applied to the Asynchronous Machine", International Letters of Chemistry, Physics and Astronomy, Vol. 55, pp. 136-149, 2015
Online since:
July 2015

[1] J.P. Caron J.P. Hautier, Modelisation et commande de la machine asynchrone, EditionTechnip Paris (1995).

[2] A. Isidori, Nonlinear Control Systems., 2nd Edition. New York, NY Springer. Verlag, (1989).

[3] J. Carvajal, G. Chen et H. Ogmen, Fuzzy PID controller: design performance evaluation and stability analysis, Inter. Jour, of Information Sciences, p.249. 170, (2000).

[4] M. Djemai, J.P. Barbot, A. Glumineau, R. Boisliveau, Nonlinear Flux Sliding mode Oberver for Induction Motor ., Experimental study. 3rd imaacs/ieee International Multiconférence, Athens, Grèce (1999).

[5] H. Chekireb, M. Tadjine, M. Djemaï, On a class of manifolds for sliding mode Control of induction motor,. Journal of Nonlinear Dynamics and Systems Theory, p.1. 14, (2008).


[6] J. Fonseca et al, Fuzzy logic speed control of induction motor, microprocessors and Microsystems , 22, pp.523-534, (1999).


[7] M. Fodil,S. Barkat,D. Boukhetala, Commande adaptative par logique floue de la machine asynchrone, " thèse de magister, univ M, sila , (2008).


[8] L.X. Wang, J.M. Mendel, Fuzzy basis functions, universal approximation, and orthogonal least square learning, IEEE Trans. Neural Networks pp.807-814, (1992).


[9] L.X. Wang, Adaptive fuzzy systems and control, design and analysis. Prentice-hall, englewood clifs, Nj, (1994).

[10] L.X. Wang, Adaptive fuzzy control of linear systems, IEEE Trans. on fuzzy systems, 1(1), pp.146-155, (1993).

[11] I. K. Hazzab, Bousserhane, M. Kamli & M. Rahli, Adaptive fuzzy sliding mode controller for induction motor control, " ICTTA, 06 IEEE in Conf. on Information and Communication Technologies: from Theory to Applications, vol. 1, p.163–168, April (2006).


[12] H. N. Nounou H. Rehman, Application of adaptive fuzzy control to ac machine, Applied Soft Computing, vol. 7, no. 3, p.899. 907, Jun (2007).


[13] N. Ezziani, Commande adaptative floue backtepping d'une MAS avec et sans capteur mecanique, these de doctorat, univ Reims Champagne, (2010).

[14] Y.J. Liu, S.C. Tong, T.S. Li, Observer-based adaptive fuzzy tracking control for a class of uncertain nonlinear MIMO systems, Fuzzy Sets Syst. 164, pp.25-44, (2011).


[15] A. Boulkroune, M. Saad, M. Farza, adaptive fuzzy control for a class of MIMo nonaffine uncertain systems, Neuro Computing 93, pp.48-55, (2012).


[16] A. Boulkroune, M. M'saad, On the design of observer-based fuzzy adaptive controller for nonlinear systems with unknown control gain sign, Fuzzy Sets and Systems 201, p.71 – 85, (2012).


[17] Y.T. Kim, Z. Bien , Robust indirect adaptative fuzzy control, , proc. IEEE Int. conf. on fuzzy Systems, Seoul, Korea, pp.1293-1298, (1999).

[18] Y.W. Cho Y.H. YEE, M. Park, An indirect model reference adaptative fuzzy controlfor SISO Takagi-Sugeno model, proc. IEEE Int. conf. on fuzzy Systems, Seoul, Korea, pp.474-479, (1999).


[19] N. Essounbouli, A. Hamzaoui, Direct and indirect robust adaptive fuzzy controllers for a class of nonlinear systems, International Journal of control, Automation and Systems, vol. 4, no. 2, p.146. 154, (2006).

[20] H. Chekireb, M. Tadjine, D. Bouchaffra, Direct adaptive fuzzy control of linear system class with application, control and intelligent systems. Vol. 31, No. 2, pp.113-121, (2003).

Show More Hide
Cited By:
This article has no citations.