This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] K. Tanneberger and A. Grasso, MINOAS Deliverable (D1): Definition of the Inspection Plan / Definition of Acceptance Criteria, http: /minoasproject. eu/excibition/Publications/PDF/D1. pdf, 2011. [On-line]. Available: http: /minoasproject. eu/excibition/Publications/PDF/ D1. pdf.
[2] M. Eich, F. Bonnin-Pascual, E. Garcia-Fidalgo, A. Ortiz, G. Bruzzone, Y. Koveos, and F. Kirchner, A Robot Application to Marine Vessel Inspection, Journal of Field Robotics, vol. 31, no. 2, p.319–341, (2014).
DOI: https://doi.org/10.1002/rob.21498[3] A. Ortiz, F. Bonnin-Pascual, and E. Garcia-Fidalgo, On the Use of UAVs for Vessel Inspection Assistance, in Proceedings of the 1st Workshop on Research, Education and Development on Unmanned Aerial Systems, Seville (Spain), Nov 30th - Dec 1st, 2011, p.71.
[4] F. Ortiz Albertoand Bonnin-Pascual, E. Garcia-Fidalgo, and J. P. Bel-tran, A Control Software Architecture for Autonomous Unmanned Vehicles Inspired in Generic Components (I), in Proc. 19th Mediter-ranean Conf. Control and Automation, (2011).
DOI: https://doi.org/10.1109/med.2011.5983136[5] M. Bibuli, G. Bruzzone, G. Bruzzone, M. Caccia, M. Giacopelli, A. Petitti, and E. Spirandelli, MARC: Magnetic Autonomous Robotic Crawler Development and Exploitation in the MINOAS Project, in Proc. 11th International Conference on Computer and IT Applications in the Maritime Industries, COMPIT 2012, 2012. [Online]. Available: http: /www. ssi. tu-harburg. de/doc/webseiten dokumente/compit/dokumente/Proceeding Compit2012 Liege. pdf.
[6] L. P. Kalra, J. Guf, and M. Meng, A Wall Climbing Robot for Oil Tank Inspection, in Proceedings of the International Conference on Robotics and Biomimetics (ROBIO), 2006, p.1523–1528.
DOI: https://doi.org/10.1109/robio.2006.340155[7] L. Christensen, N. Fischer, S. Kroffke, J. Lemburg, and R. Ahlers, Cost-Effective Autonomous Robots for Ballast Water Tank Inspection, Journal of Ship Production and Design, vol. 27, no. 3, p.127–136, (2011).
[8] ROTIS2, ROTISII: Publishable Final Activity Report, http: /cordis. europa. eu/documents/ documentlibrary/124772341EN6. pdf, [Date of access: 10/12/2012]. [Online]. Available: http: /cordis. europa. eu/documents/documentlibrary/124772341EN6. pdf.
[9] M. Hildebrandt, C. Gaudig, L. Christensen, S. Natarajan, P. M. Paran-hos, and J. Albiez, Two years of Experiments with the AUV Dagon -a Versatile Vehicle for High Precision Visual Mapping and Algorithm Evaluation, in Proceedings of IEEE/OES Autonomous Underwater Vehicles. IEEE/OES Autonomous Underwater Vehicles (AUV-2012), September 24-27, Southampton, United Kingdom. o.A., (2012).
DOI: https://doi.org/10.1109/auv.2012.6380722[10] M. Eich and T. Vogele, Design and Control of a Lightweight Magnetic Climbing Robot for Vessel Inspection, in Proc. 19th Mediterranean Conf. Control and Automation, (2011).
DOI: https://doi.org/10.1109/med.2011.5983075[11] Roboclaw 2x5A Motor Controller, http: /www. orionrobotics. com/ Roboclaw-2x5A-Motor-Controller p.270. html..
[12] gumstix Robotics Development Kit (RoboVero), https: /store. gumstix. com/index. php/products/504/..
[13] gumstix Overo AirSTORM COM, https: /store. gumstix. com/index. php/products/266..
[14] Linaro Ubuntu Linux kernel and build for embedded ARM, http: / www. linaro. org..
[15] S. Cousins, Exponential growth of ros [ros topics], Robotics Automa-tion Magazine, IEEE, vol. 18, no. 1, p.19–20, March (2011).
DOI: https://doi.org/10.1109/mra.2010.940147[16] Inspection Capabilities for Enhanced Ship Safety (INCASS) project, http: /www. incass. eu..
[1] W. Song, H. Jiang, T. Wang, D. Ji, S. Zhu, "Design of permanent magnetic wheel-type adhesion-locomotion system for water-jetting wall-climbing robot", Advances in Mechanical Engineering, Vol. 10, p. 168781401878737, 2018
DOI: https://doi.org/10.1177/1687814018787378[2] F. Bonnin-Pascual, A. Ortiz, "On the use of robots and vision technologies for the inspection of vessels: A survey on recent advances", Ocean Engineering, Vol. 190, p. 106420, 2019
DOI: https://doi.org/10.1016/j.oceaneng.2019.106420[3] P. Gierlak, K. Kurc, D. Szybicki, "Mobile crawler robot vibration analysis in the contexts of motion speed selection", Journal of Vibroengineering, Vol. 19, p. 2403, 2017
DOI: https://doi.org/10.21595/jve.2017.18142[4] M. Muthugala, A. Le, E. Cruz, M. Rajesh Elara, P. Veerajagadheswar, M. Kumar, "A Self-Organizing Fuzzy Logic Classifier for Benchmarking Robot-Aided Blasting of Ship Hulls", Sensors, Vol. 20, p. 3215, 2020
DOI: https://doi.org/10.3390/s20113215[5] F. Shah, T. Gaggero, M. Gaiotti, C. Rizzo, "Condition assessment of ship structure using robot assisted 3D-reconstruction", Ship Technology Research, p. 1, 2021
DOI: https://doi.org/10.1080/09377255.2021.1872219