A topological index of a graph G is a numeric quantity related to G which is describe molecular graph G. In this paper the Atom Bond Connectivity (ABC) and Geometric-Arithmetic (GA) indices of an infinite class of the linear parallelogram of benzenoid graph.

Periodical:

International Letters of Chemistry, Physics and Astronomy (Volume 54)

Pages:

131-134

DOI:

10.18052/www.scipress.com/ILCPA.54.131

Citation:

M. R. Farahani "On Connectivity Indices of an Infinite Family of the Linear Parallelogram of Benzenoid Graph", International Letters of Chemistry, Physics and Astronomy, Vol. 54, pp. 131-134, 2015

Online since:

Jul 2015

Authors:

Keywords:

Distribution:

Open Access

This work is licensed under a

Creative Commons Attribution 4.0 International License

References:

[1] N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, FL, (1992).

[2] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, (2000).

[3] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer Verlag, Berlin, (1986).

[4] N. Trinajstić, I. Gutman, Croat. Chem. Acta, 2002, 75, 329– 356.

[5] A. Graovac, I. Gutman, N. Trinajstić, Topological Approach to the Chemistry of Conjugated Molecules, Springer Verlag, Berlin, (1977).

[6] M. Randic, On the characterization of molecular branching. J. Amer. Chem. Soc. 97, 6609-6615, (1975).

[7] E. Estrada, L. Torres, L. Rodriguez and I. Gutman. Indian J. Chem. 37, 849 (1998).

[8] K. Ch. Das, K. Xu and A. Graovac. Maximal Unicyclic Graphs With Respect to New Atom-bond Connectivity Index. Acta Chim. Slov. 2013, 60, 34–42.

[9] D. Vukicevic and B. Furtula. Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges. J. Math. Chem. 46, 1369-1374. (2009).

DOI: 10.1007/s10910-009-9520-x[10] L. Xiao, S. Chen, Z. Guo and Q. Chen. The Geometric-Arithmetic Index of Benzenoid Systems and Phenylenes Int. J. Contemp. Math. Sciences. 5, (45), 2225-2230, (2010).

[11] M. Ghorbani and M. Ghazi, Computing some topological indices of Triangular Benzenoid. Digest. J. Nanomater. Bios, 5(4), (2010), 1107-1111.

[12] M.R. Farahani. Some Connectivity Indices and Zagreb Index of Polyhex Nanotubes. Acta Chim. Slov. 59, 779–783 (2012).

[13] M.R. Farahani. Computing some connectivity indices of Nanotubes. Adv. Mater. Corrosion. 1, (2012) 57-60.

[14] P.V. Khadikar. Padmakar-Ivan Index in Nanotechnology. Iranian Journal of Mathematical Chemistry, 2010, 1(1), 7−42.

[15] M. Alaeiyan, R. Mojarad and J. Asadpour. A new method for computing eccentric connectivity polynomial of an infinite family of linear polycene parallelogram benzenoid. Optoelectron. Adv. Mater. -Rapid Commun. 2011, 5(7), 761-763.

[16] M. Alaeiyan and J. Asadpour. Computing the MEC polynomial of an infinite family of the linear parallelogram P(n, n). Optoelectron. Adv. Mater. -Rapid Commun. 2012, 6(1-2), 191 – 193.

[17] M.R. Farahani. Computing a Counting polynomial of an infinite family of linear polycene parallelogram benzenoid graph P(a, b). Journal of Advances in Physics, 3(1), (2013), 186-190.

[18] M.R. Farahani. On Sadhana polynomial of the linear parallelogram P(n, m) of benzenoid graph. Journal of Chemica Acta. 2(2), (2013), 95-97.

[19] M.R. Farahani. Computing the Omega polynomial of an infinite family of the linear parallelogram P(n, m). Journal of Advances in Chemistry. 1, (2013), 106-109.

[20] M.R. Farahani. Connective Eccentric Index of Linear Parallelogram P(n, m). Int. Letters of Chemistry, Physics and Astronomy. 18, (2014), 57-62.

[21] M.R. Farahani. Two Types of Connectivity indices of the linear parallelogram benzenoid. New Frontiers in Chemistry. 23(1), (2014), 73-77.

[22] M.R. Farahani. Zagreb indices and their polynomials of the linear parallelogram of benzenoid graph. Global Journal of Chemistry. 1(1), 2015, 16-19.