Paper Titles in Periodical
International Letters of Chemistry, Physics and Astronomy
Volume 53


Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 53 > Effects of Anisotropy and Longitudinal Field on a...
< Back to Volume

Effects of Anisotropy and Longitudinal Field on a Ferrimagnetic Nanowire

Full Text PDF


A ferrimagnetic nanowire consists of the spin-1/2 core and spin-1 outer shell has been studied. The general formula for the temperature dependence of the longitudinal magnetization of the system is given. The ferrimagnetic core-shell nanowire system exhibits two and three compensation points when the temperature of the system is changed at fixed values of the anisotropy of shell sublattice and longitudinal field, respectively. The competition among the exchange coupling between the outer shell and core, the outer shell coupling, the anisotropy, the applied field, and the temperature has a considerable effect on the characteristic of magnetic properties in a two-dimensional nanowire system.


International Letters of Chemistry, Physics and Astronomy (Volume 53)
H. K. Mohamad and H. T. Badh Al Hamade, "Effects of Anisotropy and Longitudinal Field on a Ferrimagnetic Nanowire", International Letters of Chemistry, Physics and Astronomy, Vol. 53, pp. 64-70, 2015
Online since:
Jul 2015

[1] G. Beck, K. Petrikowski , H. R. Khan, Microstructure Analysis in Materials Science, Freiberg, (2005).

[2] M. U. Lutz, U. Weissker, F. Wolny, C. Muller, M. Loffler, T. Muhl, A. Leonhardt, B. Buchner, R. Klingeler, Magnetic properties of α-Fe and Fe3C nanowires, J. Physics: Conference Series, 200 , 2010, 072062.

DOI: 10.1088/1742-6596/200/7/072062

[3] Liying Zhang , Yafei Zhang, Fabrication and magnetic properties of Fe3O4 nanowire arrays in different diameters, J. Magn. Magn. Mater., 321, 2009, L15.

DOI: 10.1016/j.jmmm.2008.09.036

[4] V. F. Puntes, K. M. Krishnan, A. P. Alivisatos, Colloidal nanocrystal shape and size control: The case of cobalt , Science, 291, , 2001, 2115.

DOI: 10.1126/science.1057553

[5] D.J. Sellmyer, M. Zheng, R. Skomski, Magnetism of Fe, Co and Ni nanowires in self-assembled arrays, J. Phys.: Condens. Matter , 13, 2001, R433.

DOI: 10.1088/0953-8984/13/25/201

[6] A.K. Srivastava, R.S. Singh, K.E. Sampson, V.P. Singh, R.V. Ramanujan, Templated assembly of magnetic cobalt nanowire arrays, Metallurgical and Materials Transactions A , 38A, 2007, 717.

DOI: 10.1007/s11661-007-9096-7

[7] A.K. Srivastava, S. Madhavi, T.J. White, R.V. Ramanujan, Template assisted assembly of cobalt nanobowls arrays, J. Mater. Chem., 15, 2005, 4424.

DOI: 10.1039/b506799e

[8] A.K. Srivastava, S. Madhavi, T.J. White, R.V. Ramanujan, The processing and characterization of magnetic nanobowls, Thin Solid Films, 505, 2006, 93.

DOI: 10.1016/j.tsf.2005.10.015

[9] C.A. Ross, Patterned magnetic recording media, Annu. Rev. Mater. Res., 31, 2001, 203.

[10] E. Vatansever, H. Polat, Monte Carlo investigation of a spherical ferrimagnetic core–shell nanoparticle under a time dependent magnetic field, , J. Magn. Magn. Mater., 343, 2013, 221.

DOI: 10.1016/j.jmmm.2013.05.024

[11] Fathi Abubrig, Mean-Field Solution of the Mixed Spin-2 and Spin-5/2 Ising Ferrimagnetic System with Different Single-Ion Anisotropies, Open J. Applied Sciences, 3, 2013, 270.

DOI: 10.4236/ojapps.2013.33034

[12] M. Godoy, V.S. Leite, W. Figueiredo, Mixed-spin Ising model and compensation temperature, Phys. Rev. B, 69, 2004, 054428.

DOI: 10.1103/physrevb.69.054428

[13] Ersin Kantar, Yusuf Kocakaplan, Hexagonal type Ising nanowire with core/shell structure: The phase diagrams and compensation behaviors, Solid Stat. Commun., 177, 2014, 1-6.

DOI: 10.1016/j.ssc.2013.09.026
Show More Hide