Synthesis of some new quinoxalines bearing pyridinyl thiazole moiety

Haresh G. Kathrotiya, Yogesh T. Naliapara*
Department of Chemistry, Saurashtra University, Rajkot-360005, Gujarat, India
*E-mail address: naliaparachem@yahoo.co.in

Keywords: Quinoxaline; Pyridinyl; Thiazole

ABSTRACT. Keeping the objective to build up a new structural class of quinoxaline, a new series of quinoxaline derivatives bearing the pyridinyl thiazole nucleus have been synthesized by base-catalyzed chloro-amine condensation reaction approach. The protocol offers expeditious and easy synthesis with excellent yield. The chemical structures of the synthesized compounds were elucidated by 1H NMR, 13C NMR, FT-IR, elemental analysis, and mass spectral data.

1. INTRODUCTION

Quinoxaline and its derivatives are an important class of benzoheterocycles displaying a broad spectrum of biological activities which have made them privileged structures in combinatorial drug discovery libraries. Quinoxalines play an important role as a basic skeleton for the design of a number of antibiotics such as echinomycin, actinomycin, and leromycin. It has been reported that these compounds inhibit the growth of gram-positive bacteria, and are active against various transplanted tumors [1, 2]. The quinoxaline ring is also a constituent of many pharmacologically and biologically active compounds such as insecticides, fungicides, herbicides, and anthelmintics [3, 4]. Quinoxaline derivatives have found application in dyes [5], electron luminescent materials [6], organic semiconductors [7], chemically controllable switches [8], as building blocks for the synthesis of anion receptors [9], cavitands [10], dehydroannulenes [11], DNA cleaving agents [12], and also serve as useful rigid subunits in macrocyclic receptors or in molecular recognition [13].

In recent years, the synthesis of quinoxalines has attracted considerable attention [14] and a wide range of synthetic methods has been developed for the synthesis of quinoxaline derivatives [15-17]. The conventional synthetic methods of quinoxaline derivatives were carried out in organic solvent via the condensation of arene-1,2-diamines with 1,2-dicarbonyl compounds for 2-12 hours under refluxing conditions with the yields of 34-85% [18] or in high boiling point solvent such as dimethyl sulfoxide (DMSO) using the molecular iodine as the catalyst [19].

Now a days research effort has been focused on finding new catalysts to improve the yield of this condensation reaction. In addition to common Lewis acids, many other catalysts including I2 [20, 21], SA [22], Montmorillonite K-10 [23], SSA [24], H2P2W18O62 . 24H2O [25], InCl3 [26], MnCl2 [27], CuSO4 . 5H2O [28], Zn/L-Proline [29] and CAN [30] have been explored. Oxidative couplings of epoxides and ene-1,2-diamines [31] catalyzed by Bi(0), Pd(OAc)2, RuCl2(PPh3)3-TEMPO, and MnO2 have been reported [32-34]. The condensation has also been accomplished under catalyst-free conditions, but needs microwave heating [35]. Here we report the synthesis of some new quinoxalines bearing pyridine thiazole moiety by condensation reaction. The constitutions of all the products were confirmed using 1H NMR, 13C NMR, FTIR, and elemental analysis.

2. EXPERIMENTAL

Required all reagents were obtained commercially. Solvents were purified and dried before being used. All melting points were taken in open capillaries and are uncorrected. Thin-layer chromatography (TLC, on aluminium plates precoated with silica gel, 60F254, 0.25 mm thickness) (Merck, Darmstadt, Germany) was used for monitoring the progress of all reactions, purity and homogeneity of the synthesized compounds; eluent-hexane:ethyl acetate: (3:7). UV radiation and/or
iodine were used as the visualizing agents. Elemental analysis (% C, H, N) was carried out by Perkin-Elmer 2400 series-II elemental analyzer (Perkin-Elmer, USA) and all compounds are within ±0.4% of theory specified. The IR spectra were recorded in KBr on a Perkin-Elmer Spectrum GX FT-IR Spectrophotometer (Perkin-Elmer, USA) and only the characteristic peaks are reported in cm⁻¹. ¹H NMR and ¹³C NMR spectra were recorded in DMSO-d₆ on a Bruker Avance 400F (MHz) spectrometer (Bruker Scientific Corporation Ltd., Switzerland) using solvent peak as internal standard at 400 MHz and 100 MHz respectively. Chemical shifts are reported in parts per million (ppm). Mass spectra were scanned on a Shimadzu LCMS 2010 spectrometer (Shimadzu, Tokyo, Japan).

2.1 Synthetic way for substituted 2,3-dichloroquinoxaline (1a)

A mixture of appropriate substituted benzene-1,2-diamine (5 mmol), diethyl oxalate (5 mmol) and 1 ml of pyrrolidine in ethanol (10 ml) were charged in 100 ml round bottom flask equipped with condenser. The reaction mixture was stirred at reflux for 4 h. On completion of reaction, monitored by TLC, the separated substituted quinoxaline-2,3(1H,4H)-dione was filtered and washed with ethanol and dried. Again a mixture of appropriate substituted quinoxaline-2,3(1H,4H)-dione (5 gm) and 3 ml of DMF in POCl₃ (25 ml) were charged in 100 ml round bottom flask equipped with condenser. The reaction mixture was stirred at reflux for 4 h. On completion of reaction, monitored by TLC, the reaction mixture was poured in to chilled water. The separated solid was filtered, washed well with water and dried to get pure substituted 2,3-dichloroquinoxaline.

2.2 Synthetic way for substituted 3-chloro-N-(4-(pyridin-4-yl)thiazol-2-yl)quinoxalin-2-amine (3c)

A mixture of substituted 2,3-dichloroquinoxaline 1a (5 mmol), 4-(pyridin-4-yl)thiazol-2-amine 2b (5 mmol) and K₂CO₃ (5 mmol) in 10 ml IPA was refluxed for 3 h. After completion of the reaction, monitored by TLC, reaction mixture was cooled. The separated solid was filtered, washed well with water and dried, and recrystallized from ethanol to afford analytically pure substituted 3-chloro-N-(4-(pyridin-4-yl)thiazol-2-yl)quinoxalin-2-amine.

2.3 General Synthetic way for the synthesis of compounds 4a-4t

A mixture of substituted 3-chloro-N-(4-(pyridin-4-yl)thiazol-2-yl)quinoxalin-2-amine 3c (5 mmol), various aliphatic/aromatic amines (5 mmol) and K₂CO₃ (5 mmol) in 10 ml IPA was refluxed for 4-5 h. After completion of the reaction, monitored by TLC, reaction mixture was cooled. The separated solid was filtered, washed well with water and dried, and recrystallized from chloroform to afford analytically pure compounds 4a-4t. Analytical, physical, and spectroscopic characterization data of synthesized compounds 4a-4t are mentioned below.

![Scheme 1](image-url)

Scheme 1 Synthetic pathway for the synthesis of intermediate 1a
Scheme 2 Synthetic pathway for the synthesis of intermediate 3c

\[
\begin{align*}
1a & \quad + \quad 2b \\
\text{IPA / } K_2\text{CO}_3 \quad \text{Reflex} \\
\rightarrow & \quad 3c
\end{align*}
\]

Where \(R = \text{H, NO}_2 \)

Scheme 3 Synthetic pathway for the synthesis of quinoxaline derivatives 4a-4t

\[
\begin{align*}
3c & \quad + \quad \text{H}_2\text{N-}R_1 \\
\text{IPA / } K_2\text{CO}_3 \quad \text{Reflex} \\
\rightarrow & \quad 4a-4t
\end{align*}
\]

Where \(R = \text{H, NO}_2 \)
\(R_1 = \text{Aryl, Alkyl} \)

Scheme 4 Mechanism for the synthesis of quinoxaline derivatives 4a-4t

Where \(R = \text{H, NO}_2 \)
\(R_1 = \text{Heterocycles} \)
\(R_2 = \text{Aryl, Alkyl} \)
Tabel-1 Synthesis of substituted quinoxalines

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>R₁</th>
<th>RT(h.)</th>
<th>Yield %</th>
<th>mp °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>H</td>
<td>CH₃</td>
<td>5</td>
<td>75</td>
<td>90-92</td>
</tr>
<tr>
<td>4b</td>
<td>H</td>
<td>C₂H₅</td>
<td>4.5</td>
<td>78</td>
<td>93-95</td>
</tr>
<tr>
<td>4c</td>
<td>H</td>
<td>Ph</td>
<td>4.2</td>
<td>89</td>
<td>110-112</td>
</tr>
<tr>
<td>4d</td>
<td>H</td>
<td>(p-OCH₃)Ph</td>
<td>4</td>
<td>91</td>
<td>108-110</td>
</tr>
<tr>
<td>4e</td>
<td>H</td>
<td>(p-CH₃)Ph</td>
<td>4</td>
<td>90</td>
<td>99-101</td>
</tr>
<tr>
<td>4f</td>
<td>H</td>
<td>(p-NO₂)Ph</td>
<td>4.2</td>
<td>88</td>
<td>129-131</td>
</tr>
<tr>
<td>4g</td>
<td>H</td>
<td>(p-OH)Ph</td>
<td>4.5</td>
<td>85</td>
<td>121-123</td>
</tr>
<tr>
<td>4h</td>
<td>H</td>
<td>(p-F)Ph</td>
<td>4.6</td>
<td>83</td>
<td>113-115</td>
</tr>
<tr>
<td>4i</td>
<td>H</td>
<td>(p-Cl)Ph</td>
<td>4.6</td>
<td>79</td>
<td>119-121</td>
</tr>
<tr>
<td>4j</td>
<td>H</td>
<td>(p-Br)Ph</td>
<td>4.7</td>
<td>76</td>
<td>133-135</td>
</tr>
<tr>
<td>4k</td>
<td>NO₂</td>
<td>CH₃</td>
<td>4.8</td>
<td>72</td>
<td>140-142</td>
</tr>
<tr>
<td>4l</td>
<td>NO₂</td>
<td>C₂H₅</td>
<td>4.5</td>
<td>75</td>
<td>137-139</td>
</tr>
<tr>
<td>4m</td>
<td>NO₂</td>
<td>Ph</td>
<td>4.3</td>
<td>88</td>
<td>105-107</td>
</tr>
<tr>
<td>4n</td>
<td>NO₂</td>
<td>(p-OCH₃)Ph</td>
<td>4</td>
<td>90</td>
<td>117-119</td>
</tr>
<tr>
<td>4o</td>
<td>NO₂</td>
<td>(p-CH₃)Ph</td>
<td>4.2</td>
<td>85</td>
<td>123-125</td>
</tr>
<tr>
<td>4p</td>
<td>NO₂</td>
<td>(p-NO₂)Ph</td>
<td>4.3</td>
<td>80</td>
<td>143-145</td>
</tr>
<tr>
<td>4q</td>
<td>NO₂</td>
<td>(p-OH)Ph</td>
<td>4.4</td>
<td>79</td>
<td>139-141</td>
</tr>
<tr>
<td>4r</td>
<td>NO₂</td>
<td>(p-F)Ph</td>
<td>4.6</td>
<td>77</td>
<td>130-132</td>
</tr>
<tr>
<td>4s</td>
<td>NO₂</td>
<td>(p-Cl)Ph</td>
<td>4.8</td>
<td>75</td>
<td>114-116</td>
</tr>
<tr>
<td>4t</td>
<td>NO₂</td>
<td>(p-Br)Ph</td>
<td>4.9</td>
<td>73</td>
<td>138-140</td>
</tr>
</tbody>
</table>

The required 4-(pyridin-4-y1)thiazol-2-amine 2b was prepared by solid phase reaction according to literature procedure [36].

In the present study, all the quinoxaline derivatives 4a-4t were obtained in good yields by the potassium carbonate catalyzed chloro-amine condensation reaction of various aliphatic/aromatic amines with 3-chloro-N-(4-(pyridin-4-y1)thiazol-2-yl)quinoxalin-2-amine 3c in IPA under reflux condition as depicted in (Scheme 3). The formation of compounds 4a-4t may proceed via chloroamine condensation in presence of potassium carbonate. Reaction of substituted benzene-1,2-diamine and diethyl oxalate gave substituted quinoxaline-2,3(1H,4H)-dione by removal of two ethanol molecule which treated by POCl₃ to achieve substituted 2,3-dichloroquinoxaline. In the end, nucleophilic attack of amine to the substituted 2,3-dichloroquinoxaline derivatives took place to result quinoxaline derivatives 4a–4t (Scheme 4).

The identity of the product determined by ¹H NMR, ¹³C NMR, FT-IR spectral data, and molecular weight of some selected compounds were confirmed by mass spectrometry. ¹H NMR (DMSO-d6) spectrum of 4d, molecule of interest, exhibited singlet peak at d 3.92 ppm appeared for aromatic methoxy proton of phenyl ring. Aromatic protons as multiplets appeared at around d 6.88-7.91 ppm. Moreover, it exhibited two singlet peak at d 10.71 ppm and d 10.82 ppm appeared for two –NH– protons. The ¹³C NMR spectrum is in consonance with the structure assigned. In the ¹³C NMR spectra, signals around d 110.25–143.80 ppm are attributed to aromatic carbons of compound 4d. Morver 4d exhibited a distinctive signal at d 55.60 ppm for aromatic methoxy carbon. The IR spectrum of compound 4d exhibited characteristic absorption band at 3,356 and 3,248 cm⁻¹ for cyclic –NH– group. And 3,021 cm⁻¹ for aromatic C–H stretching. The mass spectra of compounds 4d and 4f, molecules of interest, detected the expected molecular ion signals corresponding to respective molecular formula, i.e., mass spectra of compounds 4d and 4f gave molecular ion peak at m/z 426.1 (M + 1) and m/z 441.1 (M + 1) corresponding to molecular formula C₂₃H₁₈N₆OS and C₂₂H₁₅N₇O₂S. The obtained elemental analysis values are in good agreement with theoretical data. Similarly, all these compounds were characterized on the basis of spectral studies. All spectroscopic data have been given in spectral data.
3. SPECTRAL DATA

N²-methyl-N³-(4-(pyridin-4-yl)thiazol-2-yl)quinoxaline-2,3-diamine (4a)

light yellow solid, yield 75%, m.p. 90-92°C, IR (KBr, v, cm⁻¹): 3239 (N-H Str.), 3250 (N-H Str.), 3038 (Ar C-H Str.), 1H NMR (400 MHz, DMSO-d₆) δ_H (ppm): δ 3.800 (s, 3H, CH₃), 7.202-8.113 (m, 9H, Ar-H), 10.300 (s, 1H, NH), 10.413 (s, 1H, NH). 13C NMR (100 MHz, DMSO-d₆) δ_C (ppm): 29.30 (NH-CH₃), 110.12, 112.20, 114.30, 115.16, 116.80, 118.36, 122.40, 124.20, 126.12, 128.30, 129.03, 131.21, 133.12, 135.16, 136.00, 137.18 (Ar-C). MS(M⁺): 334.10, Anal. Calcd. for C₁₁H₁₄N₆S (334.4): C 61.06, H 4.22, N 25.13 Found: C 61.20, H 4.11, N 24.90%.

N²-ethyl-N³-(4-(pyridin-4-yl)thiazol-2-yl)quinoxaline-2,3-diamine (4b)

light yellow solid, yield 78%, m.p. 93-95°C, IR (KBr, v, cm⁻¹): 3343 (N-H Str.), 3270 (N-H Str.), 3035 (Ar C-H Str.), 1H NMR (400 MHz, DMSO-d₆) δ_H (ppm): δ 1.001 (t, 3H, CH₃), 2.980 (q, 2H, CH₂), 6.812-7.918 (m, 9H, Ar-H), 10.326 (s, 1H, NH), 10.563 (s, 1H, NH). 13C NMR (100 MHz, DMSO-d₆) δ_C (ppm): 20.12 (CH₃), 34.68 (NH-CH₂), 110.46, 112.80, 113.60, 114.17, 116.90, 118.56, 122.50, 124.60, 125.16, 128.40, 129.50, 131.80, 133.63, 135.18, 136.00, 137.88 (Ar-C). MS(M⁺): 348.12, Anal. Calcd. for C₁₈H₁₆N₆S (348.42): C 62.05, H 4.63, N 24.12 Found: C 62.20, H 4.50, N 24.25%.

N²-phenyl-N³-(4-(pyridin-4-yl)thiazol-2-yl)quinoxaline-2,3-diamine (4c)

light yellow solid, yield 89%, m.p. 110-112°C, IR (KBr, v, cm⁻¹): 3356(N-H Str.), 3239 (N-H Str.), 3008 (Ar C-H Str.), 1H NMR (400 MHz, DMSO-d₆) δ_H (ppm): δ 7.220-8.124 (m, 14H, Ar-H), 10.654 (s, 1H, NH), 10.735 (s, 1H, NH). 13C NMR (100 MHz, DMSO-d₆) δ_C (ppm): 110.12, 111.03, 113.16, 115.32, 117.18, 118.98, 121.00, 122.36, 124.02, 125.66, 127.00, 128.18, 130.44, 131.45, 133.00, 135.24, 136.58, 137.85, 139.04, 141.22, 142.56, 143.12(Ar-C). MS(M⁺): 396.12, Anal. Calcd. for C₂₂H₁₆N₆S (396.47): C 66.65, H 4.07, N 21.20 Found: C 66.50, H 4.02, N 21.30%.

N²-(4-methoxyphenyl)-N³-(4-(pyridin-4-yl)thiazol-2-yl)quinoxaline-2,3-diamine (4d)

light yellow solid, yield 91%, m.p. 108-110°C, IR (KBr, v, cm⁻¹): 3356 (N-H Str.), 3248 (N-H Str.), 3021 (Ar C-H Str.), 1H NMR (400 MHz, DMSO-d₆) δ_H (ppm): δ 3.920 (s, 3H, OCH₃), 6.882-7.914 (m, 13H, Ar-H), 10.712 (s, 1H, NH), 10.825 (s, 1H, NH). 13C NMR (100 MHz, DMSO-d₆) δ_C (ppm): 55.60 (OCH₃), 110.25, 112.06, 113.26, 115.45, 116.11, 118.88, 120.00, 122.26, 124.28, 125.88, 126.18, 128.23, 130.56, 131.90, 133.54, 134.24, 136.21, 137.12, 139.14, 141.25, 142.61, 143.80(Ar-C). MS(M⁺): 426.13, Anal. Calcd. for C₃₂H₂₈N₆OS (426.49): C 64.77, H 4.25, N 19.70 Found: C 64.85, H 4.20, N 19.80%.

N²-(4-pyridin-4-yl)thiazol-2-yl)-N³-p-tolyquinoxaline-2,3-diamine (4e)

light yellow solid, yield 90%, m.p. 99-101°C, IR (KBr, v, cm⁻¹): 3378(N-H Str.), 3242 (N-H Str.), 3021 (Ar C-H Str.), 1H NMR (400 MHz, DMSO-d₆) δ_H (ppm): δ 2.325 (s, 3H, CH₃), 7.300-8.230 (m, 13H, Ar-H), 10.150 (s, 1H, NH), 10.260 (s, 1H, NH). 13C NMR (100 MHz, DMSO-d₆) δ_C (ppm): 26.30 (CH₃), 109.13, 110.06, 113.28, 115.64, 117.99, 120.11, 121.01, 122.44, 124.77, 125.16, 127.14, 128.18, 129.10, 131.2, 133.00, 134.26, 136.81, 137.56, 139.11, 141.38, 142.99, 144.00(Ar-C). MS(M⁺): 410.13, Anal. Calcd. for C₃₂H₂₈N₆OS (410.49): C 67.30, H 4.42, N 20.47 Found: C 67.45, H 4.50, N 20.88%.
N²-(4-nitrophenyl)-N³-(4-(pyridin-4-yl)thiazol-2-yl)quinoxaline-2,3-diamine (4f)

Light yellow solid, yield 88%, m.p. 129-131°C, IR (KBr, ν, cm⁻¹): 3306 (N-H Str.), 3215 (N-H Str.), 3020 (Ar C-H Str.), ¹H NMR (400 MHz, DMSO-d₆) δ_H (ppm): δ 6.990-7.988 (m, 13H, Ar-H), 10.223 (s, 1H, NH), 10.425 (s, 1H, NH). ¹³C NMR (100 MHz, DMSO-d₆) δ_C (ppm): 110.23, 111.84, 112.36, 114.74, 115.80, 116.89, 118.00, 119.54, 121.47, 122.64, 124.01, 126.07, 127.24, 128.45, 130.33, 132.01, 133.45, 134.90, 136.00, 137.80, 139.12, 140.51 (Ar-Ç). MS(M⁺): 441.10, Anal. Calcd. for C$_{22}$H$_{15}$BrN$_6$S (441.47): C 59.85, H 3.42, N 22.21 Found: C 59.70, H 3.30, N 22.30%.

4-(2-(4-(pyridin-4-yl)thiazol-2-ylamino)quinoxalin-3-ylamino)phenol (4g)

Light yellow solid, yield 85%, m.p. 121-123°C, IR (KBr, ν, cm⁻¹): 3312 (N-H Str.), 3218 (N-H Str.), 3029 (Ar C-H Str.), ¹H NMR (400 MHz, DMSO-d₆) δ_H (ppm): δ 5.125 (s, 1H, OH), 7.223-8.324 (m, 13H, Ar-H), 10.108 (s, 1H, NH), 10.223 (s, 1H, NH). ¹³C NMR (100 MHz, DMSO-d₆) δ_C (ppm): 106.66, 111.70, 113.00, 114.25, 115.25, 116.44, 117.00, 120.22, 121.33, 122.36, 124.08, 126.44, 127.34, 128.13, 129.33, 132.51, 133.12, 134.18, 136.00, 137.61, 139.77, 140.19 (Ar-Ç). MS(M⁺): 412.11, Anal. Calcd. for C$_{22}$H$_{16}$N$_6$O$_2$S (417.51): C 64.06, H 3.91, N 20.38 Found: C 64.10, H 3.70, N 20.40%.

N²-(4-fluorophenyl)-N³-(4-(pyridin-4-yl)thiazol-2-yl)quinoxaline-2,3-diamine (4h)

Light yellow solid, yield 83%, m.p. 113-115°C, IR (KBr, ν, cm⁻¹): 3361 (N-H Str.), 3249 (N-H Str.), 3019 (Ar C-H Str.), ¹H NMR (400 MHz, DMSO-d₆) δ_H (ppm): δ 6.856-7.842 (m, 13H, Ar-H), 10.658 (s, 1H, NH), 10.724 (s, 1H, NH). ¹³C NMR (100 MHz, DMSO-d₆) δ_C (ppm): 109.36, 110.25, 112.77, 114.96, 115.35, 116.41, 117.05, 119.34, 121.87, 122.12, 123.01, 125.07, 126.28, 128.17, 130.51, 132.24, 133.14, 134.74, 136.02, 137.10, 140.00, 141.77 (Ar-Ç). MS(M⁺): 441.11, Anal. Calcd. for C$_{22}$H$_{13}$FN$_6$S (414.46): C 63.75, H 3.65, N 20.28 Found: C 63.80, H 3.60, N 20.40%.

N²-(4-chlorophenyl)-N³-(4-(pyridin-4-yl)thiazol-2-yl)quinoxaline-2,3-diamine (4i)

Light yellow solid, yield 79%, m.p. 119-121°C, IR (KBr, ν, cm⁻¹): 3316 (N-H Str.), 3214 (N-H Str.), 3019 (Ar C-H Str.), ¹H NMR (400 MHz, DMSO-d₆) δ_H (ppm): δ 7.125-8.213 (m, 13H, Ar-H), 10.523 (s, 1H, NH), 10.856 (s, 1H, NH). ¹³C NMR (100 MHz, DMSO-d₆) δ_C (ppm): 106.38, 107.85, 109.18, 110.33, 112.45, 114.51, 115.02, 116.33, 117.89, 118.20, 119.26, 121.00, 123.14, 125.14, 126.78, 127.88, 129.14, 130.01, 132.11, 133.17, 134.51, 136.00 (Ar-Ç). MS(M⁺): 430.08, Anal. Calcd. for C$_{22}$H$_{15}$ClN$_6$S (430.91): C 61.32, H 3.51, N 19.50 Found: C 61.28, H 3.40, N 19.55%.

N²-(4-bromophenyl)-N³-(4-(pyridin-4-yl)thiazol-2-yl)quinoxaline-2,3-diamine (4j)

Light yellow solid, yield 76%, m.p. 133-135°C, IR (KBr, ν, cm⁻¹): 3298 (N-H Str.), 3233 (N-H Str.), 3022 (Ar C-H Str.), ¹H NMR (400 MHz, DMSO-d₆) δ_H (ppm): δ 6.798-7.623 (m, 13H, Ar-H), 10.118 (s, 1H, NH), 10.236 (s, 1H, NH). ¹³C NMR (100 MHz, DMSO-d₆) δ_C (ppm): 106.88, 108.86, 109.36, 110.22, 111.26, 113.11, 114.06, 116.77, 117.99, 118.18, 119.98, 121.10, 123.44, 124.33, 126.20, 127.16, 128.16, 130.01, 132.6, 133.27, 134.37, 135.01 (Ar-Ç). MS(M⁺): 474.03, Anal. Calcd. for C$_{22}$H$_{13}$BrN$_6$S (475.36): C 55.59, H 3.18, N 17.68 Found: C 59.50, H 3.30, N 17.72%.
A³-methyl-6-nitro-N²-(4-(pyridin-4-yl)thiazol-2-yl)quinoxaline-2,3-diamine (4k)

light yellow solid, yield 72%, m.p. 140-142°C, IR (KBr, υ, cm⁻¹): 3326 (N-H Str.), 3223 (N-H Str.), 3042 (Ar C-H Str.), ¹H NMR (400 MHz, DMSO-d₆) δH (ppm): δ 3.200 (s, 3H, CH₃), 6.980-7.681 (m, 8H, Ar-H), 10.366 (s, 1H, NH), 10.513 (s, 1H, NH). ¹³C NMR (100 MHz, DMSO-d₆) δC (ppm): 28.26 (NH-CH₃), 112.42, 113.68, 114.00, 115.68, 116.78, 117.18, 119.54, 121.74, 122.64, 123.08, 125.00, 127.13, 129.44, 130.51, 132.44, 134.36 (Ar-C). MS(⁺): 379.09, Anal. Calcd. for C₁₁H₁₃N₇O₂S (379.40): C 53.82, H 3.45, N 25.84 Found: C 53.70, H 3.55, N 25.70%.

A³-ethyl-6-nitro-N²-(4-(pyridin-4-yl)thiazol-2-yl)quinoxaline-2,3-diamine (4l)

light yellow solid, yield 75%, m.p. 137-139°C, IR (KBr, υ, cm⁻¹): 3366 (N-H Str.), 3252 (N-H Str.), 3041 (Ar C-H Str.), ¹H NMR (400 MHz, DMSO-d₆) δH (ppm): δ 1.113 (t, 3H, CH₃), 2.756 (q, 2H, CH₂), 7.320-8.126 (m, 8H, Ar-H), 10.222 (s, 1H, NH), 10.306 (s, 1H, NH). ¹³C NMR (100 MHz, DMSO-d₆) δC (ppm): 19.13 (CH₃), 35.14 (NH-CH₂), 111.6, 112.70, 114.6, 115.4, 116.1, 117.7, 20.00, 121.65, 122.2, 123.16, 125.50, 127.7, 129.14, 131.51, 132.34, 135.30 (Ar-C). MS(⁺): 393.10, Anal. Calcd. for C₁₈H₁₆N₇O₂S (393.42): C 54.95, H 3.84, N 24.92 Found: C 54.80, H 3.90, N 24.80%.

6-nitro-N³-phenyl-N²-(4-(pyridin-4-yl)thiazol-2-yl)quinoxaline-2,3-diamine (4m)

light yellow solid, yield 88%, m.p. 105-107°C, IR (KBr, υ, cm⁻¹): 3376 (N-H Str.), 3280 (N-H Str.), 3022 (Ar C-H Str.), ¹H NMR (400 MHz, DMSO-d₆) δH (ppm): δ 7.120-8.156 (m, 13H, Ar-H), 10.118 (s, 1H, NH), 10.236 (s, 1H, NH). ¹³C NMR (100 MHz, DMSO-d₆) δC (ppm): 111.03, 112.36, 113.00, 114.56, 115.36, 117.00, 118.36, 119.68, 121.45, 122.36, 123.78, 125.01, 127.36, 129.33, 131.47, 133.26, 134.78, 136.08, 137.45, 138.39, 140.2, 142.30 (Ar-C). MS(⁺): 441.10, Anal. Calcd. for C₂₂H₁₆N₇O₂S (441.47): C 59.85, H 3.42, N 22.21 Found: C 59.70, H 3.35, N 22.30%.

A³-(4-methoxyphenyl)-6-nitro-N²-(4-(pyridin-4-yl)thiazol-2-yl)quinoxaline-2,3-diamine (4n)

light yellow solid, yield 90%, m.p. 117-119°C, IR (KBr, υ, cm⁻¹): 3347 (N-H Str.), 3289 (N-H Str.), 3016 (Ar C-H Str.), ¹H NMR (400 MHz, DMSO-d₆) δH (ppm): δ 3.520 (s, 3H, OCH₃), 6.725-7.984 (m, 12H, Ar-H), 10.635 (s, 1H, NH), 10.758 (s, 1H, NH). ¹³C NMR (100 MHz, DMSO-d₆) δC (ppm): 54.30 (OCH₃), 111.27, 112.33, 113.18, 114.90, 115.23, 116.00, 117.35, 120.68, 121.46, 122.27, 123.44, 125.36, 127.29, 130.30, 131.83, 133.11, 134.64, 136.26, 137.33, 138.21, 140.01, 140.90(Ar-C). MS(⁺): 471.11, Anal. Calcd. for C₂₃H₁₇N₅O₃S (471.49): C 58.59, H 3.63, N 20.80 Found: C 58.70, H 3.48, N 20.62%.

6-nitro-N²-(4-(pyridin-4-yl)thiazol-2-yl)-N³-p-tolylquinoxaline-2,3-diamine (4o)

light yellow solid, yield 85%, m.p. 123-125°C, IR (KBr, υ, cm⁻¹): 3291 (N-H Str.), 3218 (N-H Str.), 3046 (Ar C-H Str.), ¹H NMR (400 MHz, DMSO-d₆) δH (ppm): δ 2.488 (s, 3H, CH₃), 6.925-7.846 (m, 12H, Ar-H), 10.236 (s, 1H, NH), 10.500 (s, 1H, NH). ¹³C NMR (100 MHz, DMSO-d₆) δC (ppm): 27.20 (CH₃), 110.06, 111.26, 112.01, 113.46, 115.11, 117.8, 118.2, 119.70, 121.23, 122.27, 123.11, 125.19, 127.22, 128.12, 130.42, 132.16, 134.3, 136.17, 137.11, 138.20, 140.11, 141.30(Ar-C). MS(⁺): 455.12, Anal. Calcd. for C₂₃H₁₇N₅O₃S (455.49): C 60.65, H 3.76, N 21.53 Found: C 60.40, H 3.58, N 21.78%.
6-nitro-N³-(4-nitrophenyl)-N²-(4-(pyridin-4-yl)thiazol-2-yl)quinoxaline-2,3-diamine (4q)

light yellow solid, yield 80%, m.p. 143-145°C, IR (KBr, v, cm⁻¹): 3364 (N-H Str.), 3274 (N-H Str.), 3021 (Ar C-H Str.), ¹H NMR (400 MHz, DMSO-d₆) δH (ppm): δ 7.236-8.200 (m, 12H, Ar-H), 10.820 (s, 1H, NH), 10.954 (s, 1H, NH). ¹³C NMR (100 MHz, DMSO-d₆) δC (ppm): 113.24, 114.21, 115.36, 116.47, 117.36, 118.30, 119.01, 122.36, 123.47, 125.19, 127.40, 129.30, 131.21, 133.00, 134.51, 136.12, 137.00, 138.36, 139.99, 141.20, 142.39, 144.00 (Ar-C). MS(M⁺): 486.09, Anal. Calcd. for C₂₂H₁₄N₈O₈S (486.46): C 54.32, H 2.90, N 23.03 Found: C 54.15, H 2.77, N 23.09%.

4-(2-(4-(pyridin-4-yl)thiazol-2-ylamino)-6-nitroquinolin-3-ylamino)phenol (4r)

light yellow solid, yield 79%, m.p. 139-141°C, Anal. IR (KBr, v, cm⁻¹): 3388 (N-H Str.), 3263 (N-H Str.), 3018 (Ar C-H Str.), ¹H NMR (400 MHz, DMSO-d₆) δH (ppm): δ 4.900 (s, 1H, OH), 6.714-7.864 (m, 12H, Ar-H), 10.364 (s, 1H, NH), 10.412 (s, 1H, NH). ¹³C NMR (100 MHz, DMSO-d₆) δC (ppm): 112.33, 113.01, 115.63, 116.11, 117.42, 118.10, 120.44, 122.31, 123.17, 124.11, 127.35, 129.42, 131.10, 133.03, 135.41, 136.77, 137.01, 138.63, 139.88, 141.10, 142.26, 143.90 (Ar-C). MS(M⁺): 457.10, Anal. Calcd. for C₂₂H₁₅N₅O₈S (457.46): C 57.76, H 3.30, N 21.43 Found: C 57.50, H 3.24, N 21.20%.

N³-(4-fluorophenyl)-6-nitro-N²-(4-(pyridin-4-yl)thiazol-2-yl)quinoxaline-2,3-diamine (4r)

light yellow solid, yield 77%, m.p. 130-132°C, IR (KBr, v, cm⁻¹): 3328 (N-H Str.), 3260 (N-H Str.), 3006 (Ar C-H Str.), ¹H NMR (400 MHz, DMSO-d₆) δH (ppm): δ 7.210-8.126 (m, 12H, Ar-H), 10.366 (s, 1H, NH), 10.513 (s, 1H, NH). ¹³C NMR (100 MHz, DMSO-d₆) δC (ppm): 112.26, 113.20, 114.30, 116.18, 117.20, 118.11, 119.34, 122.56, 123.64, 125.18, 128.41, 129.10, 131.11, 133.18, 134.41, 135.64, 136.01, 138.4, 139.64, 141.34, 142.30, 143.00 (Ar-C). MS(M⁺): 459.09, Anal. Calcd. for C₂₂H₁₄FN₇O₂S (459.46): C 57.51, H 3.07, N 21.34 Found: C 57.46, H 3.62, N 21.38%.

N³-(4-chlorophenyl)-6-nitro-N²-(4-(pyridin-4-yl)thiazol-2-yl)quinoxaline-2,3-diamine (4s)

light yellow solid, yield 75%, m.p. 114-116°C, IR (KBr, v, cm⁻¹): 3358 (N-H Str.), 3290 (N-H Str.), 3042 (Ar C-H Str.), ¹H NMR (400 MHz, DMSO-d₆) δH (ppm): δ 7.100-8.123 (m, 12H, Ar-H), 10.636 (s, 1H, NH), 10.813 (s, 1H, NH). ¹³C NMR (100 MHz, DMSO-d₆) δC (ppm): 114.30, 115.34, 116.18, 117.01, 119.56, 120.45, 122.13, 124.36, 125.61, 126.87, 128.03, 129.54, 131.66, 133.00, 135.44, 136.88, 137.24, 139.64, 140.20, 141.22, 143.00, 144.29 (Ar-C). MS(M⁺): 475.06, Anal. Calcd. for C₂₂H₁₄ClN₇O₂S (475.91): C 55.52, H 2.97, N 20.60 Found: C 55.30, H 3.08, N 20.80%.

N³-(4-bromophenyl)-6-nitro-N²-(4-(pyridin-4-yl)thiazol-2-yl)quinoxaline-2,3-diamine (4t)

light yellow solid, yield 73%, m.p. 138-140°C, IR (KBr, v, cm⁻¹): 3295 (N-H Str.), 3219 (N-H Str.), 3056 (Ar C-H Str.), ¹H NMR (400 MHz, DMSO-d₆) δH (ppm): δ 6.963-7.890 (m, 12H, Ar-H), 10.654 (s, 1H, NH), 10.700 (s, 1H, NH). ¹³C NMR (100 MHz, DMSO-d₆) δC (ppm): 114.26, 115.18, 116.29, 116.91, 117.56, 120.22, 121.14, 124.35, 125.36, 126.0, 127.9, 129.60, 131.62, 133.01, 135.22, 136.78, 137.64, 138.94, 140.30, 141.64, 143.18, 143.99 (Ar-C). MS(M⁺): 519.01, Anal. Calcd. for C₂₂H₁₄BrN₇O₂S (520.36): C 50.78, H 2.71, N 18.84 Found: C 50.60, H 2.82, N 18.86%.
4. CONCLUSION

New substituted quinoxaline derivatives bearing the thiazole and pyridine nucleus have been synthesized through chloro-amine condensation reaction. This synthetic strategy allows the assimilation of three promising heterocycles through an easy way.

Acknowledgments
The authors are thankful to the Head, Department of Chemistry, Saurashtra University, Rajkot for providing 1H NMR, 13C NMR, mass and FT-IR spectroscopy and research facilities.

References