Paper Titles in Periodical
International Letters of Chemistry, Physics and Astronomy
Volume 52


Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 52 > Synthesis and Characterization of Iron Oxide...
< Back to Volume

Synthesis and Characterization of Iron Oxide Nanoparticles Reinforced Polyester/Nanocomposites

Full Text PDF


We report on synthesis of two highly disperse nanoparticles viz. Fe2O3 & f-Fe2O3 using chemical reduction method. Reaction was initiated to mix solution A (i.e. Fecl3 6H2o) into solution B (i.e. Fecl24H2o) together under the presence of ammonium to develop nanoparticles. Mechanical properties of above mentioned nanoparticles filled with polyester polymer nanocomposites were fabricated to assess the possibility of using this filler as a new material. Methacryloxypropyl was used as a functionalization agent to prepare f-Fe2O3nanoparticles. Mechanical properties of f-Fe2O3 nanocomposites were improved with the help of functionalization when compared with Fe2O3 nanocomposites. A functionalization of nanoparticles favours the composite fabrication with a lower curing temperature as compared to the as-synthesised nanoparticles filled polyester nanocomposites. Thermogravimetric analysis showed an increased thermo-stability of f-Fe2O3 nanoparticles filled polyester nanocomposites as compared to the Fe2O3 nanoparticles filled counterparts. Mechanical and thermal properties were increased due to the homogeneous particle dispersion and chemical bonding between nanoparticles and polyester matrix. The nanoparticles become magnetically harder after incorporation into the polyester resin matrix.


International Letters of Chemistry, Physics and Astronomy (Volume 52)
G. N. Kumar et al., "Synthesis and Characterization of Iron Oxide Nanoparticles Reinforced Polyester/Nanocomposites", International Letters of Chemistry, Physics and Astronomy, Vol. 52, pp. 39-52, 2015
Online since:
Jun 2015

[1] Chen, Y.; Sun, L.; Chiparus, O.; Negulescu, I.; Yachmenev, V.; Warnock, M. (2005). Kenaf/ramie composite for automotive headliner. J Polym. Envint. 2005, 13, 107–114.

DOI: 10.1007/s10924-005-2942-z

[2] Podlaha, E.J.; Landolt, D. Pulse-reverse plating of nanocomposite thin films. Journal of Electrochemical Society, 1997, 144, 200–202.

DOI: 10.1149/1.1837799

[3] Castro, C.; Ramos, J.; Millan, A.; Gonzalez-Calbet, J.; Palacio, F. Production of magnetic nanoparticles in imine polymer matrixes. Chemical Materials, 2000, 12, 3681–3688.

DOI: 10.1021/cm0011561

[4] Wetzel, B.; Haupert, F.; Zhang, M.Q. Epoxy nanocomposites with high mechanical and tribological performance. Composite Science and Technology, 2003, 63, 2055–(2067).

DOI: 10.1016/s0266-3538(03)00115-5

[5] Guo, Z.; Park, S.; Wei, S.; Pereira, T.; Moldovan, M.; Karki, A.B. Flexible high-loading particle-reinforced polyurethane magnetic nanocomposite fabrication through particle-surface-initiated polymerization. Nanotechnology, 2007, 18, 335-340.

DOI: 10.1088/0957-4484/18/33/335704

[6] Kohli, N.; Worden, R.M.; Lee, I. Intact transfer of layered, bionanocomposite arrays by microcontact printing. Chemical Communications, 2005, 3, 316–318.

DOI: 10.1039/b406430e

[7] Judeinstein, P.; Sanchez, C. Hybrid organic–inorganic materials: a land of multi-disciplinarity. Journal of Materials Chemistry, 1996, 26, 511–525.

[8] Zhang, X.; Simon, L.C. In situ polymerization of hybrid polyethylene– alumina nanocomposites. Macromolecular Material Engineering, 2005, 290, 573–583.

DOI: 10.1002/mame.200500075

[9] Gao, S.L.; Mader, E. Characterization of inter phase nanoscale property variations in glass fibre reinforced polypropylene and epoxy resin composites. Composites A, 2002, 33: 559–576.

DOI: 10.1016/s1359-835x(01)00134-8

[10] Shenhar, R.; Norsten, T.B.; Rotello, V.M. Polymer-mediated nanoparticle assembly: structural control and applications. Advanced Materials, 2005, 17, 657–669.

DOI: 10.1002/adma.200401291

[11] Guo, Z.; Pereira, T.; Choi, O.; Wang, Y.; Hahn, H.T. Surface functionalized alumina nanoparticle filled polymeric nanocomposites with enhanced mechanical properties. Journal of Materials Chemistry, 2006, 16, 2800–2808.

DOI: 10.1039/b603020c

[12] Guo, Z.; Wei, S.; Shedd, B.; Scaffaro, R.; Pereira, T.; Hahn H.T. Particle surface engineering effect on the mechanical, optical and photoluminescent properties of ZnO/vinyl-ester resin nanocomposites. Journal of Material Chemistry, 2007, 17, 806–813.

DOI: 10.1039/b613286c

[13] Guo, Z.; Liang, X.; Pereira, T.; Scaffaro, R.; Hahn, H.T. CuO nanoparticles filled vinyl-ester resin nanocomposites: fabrication, characterization and property analysis. Composite Science and Technology, 2007, 67, 2036–(2044).

DOI: 10.1016/j.compscitech.2006.11.017

[14] Rancourt, J.D.; Taylor, L.T. Preparation and properties of surface conductive polyimide films via in situ co-deposition of metal salts. Macromolecules, 2008, 20, 790–795.

DOI: 10.1021/ma00170a015

[15] Sawada, T.; Ando, S. Synthesis, Characterization, and Optical Properties of Metal-Containing Fluorinated Polyimide Films. Chemistry Materials, 2009, 10, 3368–3378.

DOI: 10.1021/cm980051j

[16] Chiang, P.C.; Whang, W.T. The synthesis and morphology characteristic study of bao-odpa polyimide/tio2 nanohybrid films. Polymer, 2003, 44, 2249–2254.

DOI: 10.1016/s0032-3861(03)00086-7

[17] Hsu, S.C.; Whang, W.T.; Hung, C.H.; Chiang. P.C.; Hsiao, Y.N. Effect of the Polyimide Structure and ZnO Concentration on the Morphology and Characteristics of Polyimide/ZnO Nanohybrid Films. Macromolecular Chemistry Physics, 2005, 206, 291–298.

DOI: 10.1002/macp.200400326

[18] Liu, L.; Zhang, T.J.; Cui, K.; Dong, Y.D. (1999). Reduction of copper oxide with graphite by mechanical alloying. Journal of Material Research, 1999, 14, 4062–4069.

DOI: 10.1557/jmr.1999.0548

[19] Park, S.S.; Bernet, N.; Roche, S.D.L.; Hahn, H.T. Processing of iron oxide-epoxy vinyl-ester nanocomposites. Journal of Composite Materials, 2003, 37, 465–476.

DOI: 10.1177/0021998303037005036

[20] Sorensen, C.M. Magnetic Nanoscale Materials in Chemistry. In: Klabunde KJ, editor. Nanoscale Materials in Chemistry. New York: Wiley-Interscience; 2001, 69–221.

[21] Zhang, D.; Klabunde, K.J.; Sorensen, C.M.; Hadjipanayis, G.C. Magnetization temperature dependence in iron nanoparticles. Physical Review B, 1998, 58, 14167–14170.

DOI: 10.1103/physrevb.58.14167
Show More Hide