This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] A. L. Barry., The antimicrobial susceptibility test. Principle and Practice, Lea and Febiger, Philadelphia, 180 (1976).
[2] Archana Maurya, Pratima Chauhan, Amita Mishra, and Abhay K. Pandey, Surface functionalization of TiO2 with plant extracts and their combined antimicrobial activities against E. Faecalis and E. Coli, Journal of Research Updates in Polymer Science, 1, 43-51(2012).
DOI: https://doi.org/10.6000/1929-5995.2012.01.01.6[3] Blois, M.S., 1958. Antioxidant determinations by the use of a stable free radical. Nature. 29: 1199 1200.
DOI: https://doi.org/10.1038/1811199a0[4] D. Bhattacharya and R. K. Gupta, Nanotechnology and potential of microorganisms, Critical Reviews in Biotechnology, vol. 25, no. 4, p.199–204, (2005).
[5] D. Goodsell, Bionanotechnology: Lessons from Nature, Willey- Less, New Jersey, NJ, USA, (2004).
[6] Deshpande, J.R., A.A. Choudhari, M.R. Mishra, V.S. Meghre, S.G. Wadodkar and A.K. Dorle, 2008. Beneficial effects of Lagenaria siceraria (Mol. ) Standley fruit epicarp in animal models. Indian J. Exp. Biol., 46: 234-242.
[7] H.W. Seely and P. J. Van Demark., A Laboratory Manual of Microbiology, Taraporewala Sons and Co., Mumbai, 55 (1975).
[8] Kathiresan K, Asmathunisha N (2013) A review on biosynthesis of nanoparticles by marine organisms. Coll Surf B 103: 283–287.
[9] Kumar CG, Mamidyala SK. Extracellular synthesis of silver nanoparticles using culture suspernatat of Pseudomonas aeruginosa. Colloids and Surfaces B: Biointerfaces. 2011; 80: 462-466.
DOI: https://doi.org/10.1016/j.colsurfb.2011.01.042[10] M. C. Daniel and D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chemical Reviews, vol. 104, no. 1, p.293–346, (2004).
DOI: https://doi.org/10.1021/cr030698+[11] M. Sundrarajan et al, Green synthesis of titanium dioxide nanoparticles by nyctanthes arbor-tristis leaves extract Chalcogenide Letters Vol. 8, No. 8, August 2011, pp.447-451.
[12] Mahdavi M, Namvar F, Bin Ahmad M, Mohamad R. Green biosynthesis and characterization of magnetic iron oxide(Fe3O4) Nanoparticles using seaweed (Sargassum muticum)Aqueous Extract. Molecules 2013; 18: 5954-5964.
DOI: https://doi.org/10.3390/molecules18055954[13] Naheed Ahmad and Seema Sharma, Green Synthesis of Silver Nanoparticles Using Extracts of Ananascomosus, Green and Sustainable Chemistry, 2, 141-147(2012).
DOI: https://doi.org/10.4236/gsc.2012.24020[14] O. V. Salata, Applications of nanoparticles in biology and medicine, Journal of Nanobiotechnology, vol. 2, no. 1, article 3, (2004).
[15] R. Paull, J. Wolfe, P. H´ebert, and M. Sinkula, Investing in nanotechnology, Nature Biotechnology, vol. 21, no. 10, p.1144– 1147, (2003).
DOI: https://doi.org/10.1038/nbt1003-1144[16] Rodriques AG, Ping LY, Marcato PD, Alves OL, Silva MCP, Ruiz RC, Melo IS, Tasic L, DeSouza AO. Biogenic antimicrobial silver nanoparticles produced by fungi. Applied Microbiology Biotechnology. 2012; DOI: 10. 1007/00253-012-4209-7.
DOI: https://doi.org/10.1007/s00253-012-4209-7[17] Thiyagarajan Devasena et al, Comparative Studies on Green Synthesized and Chemically Synthesized Titanium Oxide Nanoparticles. A Validation for Green Synthesis Protocol using Hibiscus FlowerJ. Environ. Nanotechnol., Vol. 3(4), 78-85, (2014).
[18] Vijayalakshmi, R. and Rajendran, V., Synthesis and characterization of nano-TiO2 via different methods, Arch of App Sci Res., 4, 1183- 1190(2012).
[1] M. Ruffini Castiglione, L. Giorgetti, L. Bellani, S. Muccifora, S. Bottega, C. Spanò, "Root responses to different types of TiO2 nanoparticles and bulk counterpart in plant model system Vicia faba L.", Environmental and Experimental Botany, Vol. 130, p. 11, 2016
DOI: https://doi.org/10.1016/j.envexpbot.2016.05.002[2] S. Subhapriya, P. Gomathipriya, "Surfactant-free bio-synthesised Tio2 nanorods from Turbinaria conoides-a study on photocatalytic and anti-bacterial activity", Materials Research Express, Vol. 5, p. 065024, 2018
DOI: https://doi.org/10.1088/2053-1591/aac3bc[3] N. Ajmal, K. Saraswat, M. Bakht, Y. Riadi, M. Ahsan, M. Noushad, "Cost-effective and eco-friendly synthesis of titanium dioxide (TiO2) nanoparticles using fruit’s peel agro-waste extracts: characterization, in vitro antibacterial, antioxidant activities", Green Chemistry Letters and Reviews, Vol. 12, p. 244, 2019
DOI: https://doi.org/10.1080/17518253.2019.1629641[4] M. Ahmad, Y. Yuesuo, Q. Ao, M. Adeel, Z. Hui, R. Javed, "Appraisal of Comparative Therapeutic Potential of Undoped and Nitrogen-Doped Titanium Dioxide Nanoparticles", Molecules, Vol. 24, p. 3916, 2019
DOI: https://doi.org/10.3390/molecules24213916[5] M. Kahsay, A. Tadesse, D. RamaDevi, N. Belachew, K. Basavaiah, "Green synthesis of zinc oxide nanostructures and investigation of their photocatalytic and bactericidal applications", RSC Advances, Vol. 9, p. 36967, 2019
DOI: https://doi.org/10.1039/C9RA07630A[6] P. Akinola, A. Lateef, T. Asafa, L. Beukes, A. Hakeem, H. Irshad, "Multifunctional titanium dioxide nanoparticles biofabricated via phytosynthetic route using extracts of Cola nitida: antimicrobial, dye degradation, antioxidant and anticoagulant activities", Heliyon, Vol. 6, p. e04610, 2020
DOI: https://doi.org/10.1016/j.heliyon.2020.e04610[7] H. Kaur, S. Kaur, S. Kumar, J. Singh, M. Rawat, "Eco-friendly Approach: Synthesis of Novel Green TiO2 Nanoparticles for Degradation of Reactive Green 19 Dye and Replacement of Chemical Synthesized TiO2", Journal of Cluster Science, 2020
DOI: https://doi.org/10.1007/s10876-020-01881-w[8] D. Enescu, A. Dehelean, C. Gonçalves, M. Cerqueira, D. Magdas, P. Fucinos, L. Pastrana, "Evaluation of the specific migration according to EU standards of titanium from Chitosan/Metal complexes films containing TiO2 particles into different food simulants. A comparative study of the nano-sized vs micro-sized particles", Food Packaging and Shelf Life, Vol. 26, p. 100579, 2020
DOI: https://doi.org/10.1016/j.fpsl.2020.100579