Paper Titles in Periodical
International Letters of Chemistry, Physics and Astronomy
Volume 50

Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 50 > Xerogels of Ammonium Polyvanadatomolybdate as...
< Back to Volume

Xerogels of Ammonium Polyvanadatomolybdate as Starting Material for Ammonia Gas Sensors

Full Text PDF

Abstract:

The various gas sensors were designed for detection of different gases in the air using different oxides and impurities [1-3]. For example the manufacturing of ammonia sensors on the basis of CuxS-micro-porous-Si structure includes manufacture of micro-porous silicon, drawing on it of SiO2 isolating layer, and then the CuxS layer [4, 5]. The special equipment for all these processes is needed. More usable method for sensor production is so-called soft chemistry or sol–gel synthesis [6, 7].

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 50)
Pages:
71-79
Citation:
V. Bondarenka et al., "Xerogels of Ammonium Polyvanadatomolybdate as Starting Material for Ammonia Gas Sensors", International Letters of Chemistry, Physics and Astronomy, Vol. 50, pp. 71-79, 2015
Online since:
May 2015
Export:
Distribution:
References:

[1] N. Yamazoe, N. Miura, Environmental gas sensing, Sens. Actuators B 20 (1994) 95–102.

[2] U. Weimar, W. Göpel, Chemical imaging: II. Trends in practical multiparameter sensor systems, Sens. Actuators B 52 (1998) 143–161.

DOI: https://doi.org/10.1016/s0925-4005(98)00268-8

[3] D.E. Williams. Semiconducting oxides as gas-sensitive resistors, Sens. Actuators B 57 (1999) 1–16.

[4] A. Galdikas, A. Mironas, V. Strazdienė, A. Šetkus, I. Ancutienė, V. Janickis, Room temperature-functioning ammonia sensor based on solid-state CuxS films, Sens. Actuators B 67 (2000) 76–83.

DOI: https://doi.org/10.1016/s0925-4005(00)00408-1

[5] A. Šetkus, A. Galdikas, A. Mironas, V. Strazdienė, I. Šimkienė, I. Ancutienė, V. Janickas, S. Kačiulis, G. Mattogno, G.M. Ingo, The room temperature ammonia sensors based on improved CuxS-microporous-Si structure, Sens. Actuators B 78 (2001).

DOI: https://doi.org/10.1142/9789812792013_0030

[6] D. R. Ulrich, Prospects for sol-gel processes, J. Non-Cryst. Solids 121 (1990) 465–479.

[7] J. Livage, Synthesis of polyoxovanadates via chimie douce, Coord. Chem. Rev. 178–180 (1998) 999–1018.

DOI: https://doi.org/10.1016/s0010-8545(98)00105-2

[8] V. L. Volkov, G. S. Zakharova, V. M. Bondarenka, Simple and modificated xerogels of polyvanadates, Ural Branch of Russian Acad. of Sci., Yekaterinburg, 2001 (in Russian).

[9] V. Bondarenka, S. Grebinskij, S. Mickevicius, V. Volkov, G. Zakharova, Influence of humidity on electrical properties of polyvanadium molybdenum acid, Lithuanian J. Phys. 33 (1993) 222–226.

[10] V. Bondarenka, S. Grebinskij, S. Mickevičius, V. Volkov, G. Zakharova, Thin films of poly-vanadium-molybdenum acid as starting materials for humidity sensors, Sensors and Actuators B 28 (1995) 227–231.

DOI: https://doi.org/10.1016/0925-4005(95)01726-7

[11] V. L. Volkov, G. S. Zakharova, L. V. Kristallov, M. V. Kuznetsov, G. Dai and M. Tong, Synthesis, structure, and properties of ammonium polyvanadomolybdate xerogels, Inorg. Mater. 37 (2001) 408–412.

DOI: https://doi.org/10.1023/a:1017544231359

[12] D. A. Shirley, High-resolution X-ray photoemission spectrum of the valence bands of gold, Phys. Rev. B 5 (1972) 4709–4714.

DOI: https://doi.org/10.1103/physrevb.5.4709

[13] C. D. Wagner, J. F. Moulder, L. E. Davis, W. M. Riggs, Handbook of X-ray PhotoelectronSpectroscopy, Perkin. Elmer Corporation, Physical Electronics Division, (1995).

[14] B. F. Dzhurinskii, D. Gati, N. P. Sergushin, V. I. Nefedov, Ya. V. Salyn, Simple and coordination compounds. An X-ray photoelectron spectroscopic study of certain oxides, Zh. Neorg. Khim. (Russ. J. Inorg. Chem. ) 20 (1975) 2307–2314 (in Russian).

[15] G. Hopfengärtner, D. Borgmann, I. Rademcher, G. Wedler, E. Hums, G.W. Spitznagel, XPS studies of oxidic model catalysts: Internal standards and oxidation numbers, J. Electron Spectrosc. Related Phenomena 63 (1993) 91–116.

DOI: https://doi.org/10.1016/0368-2048(93)80042-k

[16] T. L. Barr, An ESCA study of termination of the passivation of elemental metals, J. Phys. Chem. 82 (1978) 1801–1810.

DOI: https://doi.org/10.1021/j100505a006

[17] C. O. A. Olsson, S.E. Hornstrom, An AES and XPS study of the high alloy austenic stainless steel 254 SMO tested in a ferric chloride solution, Corrosion Sci. 36 (1994) 141–151.

DOI: https://doi.org/10.1016/0010-938x(94)90115-5

[18] G. D. Khattak, M. A. Salim, A. S. Al-Harthi, D. J. Thompson, L. E. Wenger, Structure of molybdenum-phosphate glasses by X-ray photoelectron spectroscopy (XPS), J. Non-Cryst. Solids 212 (1997) 180–181.

DOI: https://doi.org/10.1016/s0022-3093(97)00023-9

[19] C. R. Clayton, K. G. Martin, Evidence of anodic segregation of nitrogen in high nitrogen stainless steels and its influence on passivity, in: eds. A. Hendry and J. Foche, Proceedings of International Conference on High Nitrogen Steel HNS 88, Lille, London (1989).

[20] V. Bondarenka, S. Kaciulis, A. Plesanovas, V. Volkov, G. Zacharova, Photoelectron spectroscopy of the poly-vanadium transition metal acids, Appl. Surf. Sci. 78 (1994) 107–112. ( Received 21 April 2015; accepted 02 May 2015 ).

DOI: https://doi.org/10.1016/0169-4332(94)90038-8
Show More Hide