Paper Titles in Periodical
International Letters of Chemistry, Physics and Astronomy
ILCPA Volume 50

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > ILCPA Volume 50 > Satellite Derived Aerosol Optical Depth...
< Back to Volume

Satellite Derived Aerosol Optical Depth Climatology over Tropical Coastal Station Machilipatnam, India

Full Text PDF


Climatological aerosol optical depths (AOD) over Tropical coastal city Machilipatnam, India have been examined to bring out the temporal heterogeneity in columnar aerosol characteristics. AOD values at 388 nm derived from the Ozone Monitoring Instrument (OMI) sensor EOS-AURA satellite, for the period of 2005–2013 have been analyzed for the purpose. AOD trends exhibited seasonal annual mean variations. Frequency distributions of the AOD values are examined to infer the monthly mean values. Monthly and seasonal variations of AOD are investigated in the light of regional synoptic meteorology. AODs>0.6 showed maximum occurrence in monsoon months. The mean AOD values increased towards summer reaching ~0.69 ± 0.34 and attained peak in monsoon season with a value of ~0.74 ± 0.33 and decreased during post-monsoon reaching as low as ~0.73 ± 0.3. Positive slope ~0.016 observed for inter annual distribution trend line. Factors like synoptic scale circulation patterns which are causing modulations of AOD apart from local sources were discussed.


International Letters of Chemistry, Physics and Astronomy (Volume 50)
A.S. Madhusudanacharyulu et al., "Satellite Derived Aerosol Optical Depth Climatology over Tropical Coastal Station Machilipatnam, India", International Letters of Chemistry, Physics and Astronomy, Vol. 50, pp. 188-198, 2015
Online since:
May 2015

[1] Albrecht BA. (1989). Aerosols, cloud microphysics, and fractional cloudiness. Science 245: 1227–1230.


[2] Badrinath KVS, Madhavi Latha K. (2006), Direct radiative forcing from black carbon aerosols over urban environment. Advances in Space Research 37: 2183–2188.


[3] Chu DA, Kaufman YJ, Zibordi G, Chern JD, Mao J, Li C, Holben BN. (2003). Global monitoring of air pollution over land from EOS-Terra MODIS. Journal of Geophysical Research 108: 4661, DOI: 10. 1029/2002JD003179.


[4] Delage, Y. (1974), A numerical study of the nocturnal atmospheric boundary layer, Q. J. R. Meteorol. Soc., 100, 351–364, doi: 10. 1002/qj. 49710042507.

[5] Gogoi, M. M., K. K. Moorthy, S. S. Babu, and P. K. Bhuyan (2009).

[6] Intergovernmental Panel on Climate Change (IPCC) (2001).

[7] Karnieli, A., Derimian, Y., Indoitu, R., Panov, N., Levy, R. C., Remer, L. A., Maenhaut, W., and Holben, B. N.: (2009).

[8] Kaskaoutis, D.G., Singh, R.P., Gautam, R., Sharma, M., Kosmopoulos, P.G., Tripathi, S.N. (2012). Variability and trends of aerosol properties over Kanpur, Northern India using AERONET data (2001–2010). Environ. Res. Lett. 7, 024003.


[9] Khatri P, Ishizaka Y, Takamura T. (2009), A Study on aerosol optical properties in an urban atmosphere of Nagoya, Japan. Journal of the Meteorological Society of Japan 87: 19–38.


[10] King MD, Menzel WP, Kaufman, YJ, Tanre D, Gao BC., Platnic S, Ackerman SA, Remer LA, Pincus R, Hubanks PA. (2003).

[11] Moorthy, K. K., P. R. Nair, and B. V. Krishna Murthy (1991), Size distribution of coastal aerosols: Effects of local sources and sinks, J. Appl. Meteorol., 30, 844 – 852, doi: 10. 1175/1520-0450(1991)030< 0844: SDOCAE>2. 0. CO; 2.


[12] Moorthy, K. K., B. V. K. Murthy, and P. R. Nair (1993), Sea breeze front effects on boundary layer aerosols at a tropical coastal station, J. Appl. Meteorol., 32, 1196 – 1205, doi: 10. 1175/1520-0450(1993)032<1196: SBFEOB>2. 0. CO; 2.


[13] Moorthy, K. K., S. S. Babu, and S. K. Satheesh (2007a), Temporal heterogeneity in aerosol characteristics and the resulting radiative impact at a tropical coastal station – Part 1: Microphysical and optical properties, Ann. Geophys., 25, 2293–2308.


[14] Narayanan, V.: An observational study of the sea breeze at an equatorial coastal station, J. Appl. Meteorol., 18, 497–504, (1967).

[15] Panicker AS, Pandithurai G, Safai PD, Kewat S. (2008), Observations of enhanced aerosol longwave radiative forcing over an urban environment, Geophysical Research Letters 35: L04817, OI: 10. 1029/2007GL032879.


[16] Panicker AS, Pandithurai G, Safai PD, Dipu S, Lee DI. (2010a), on the contribution of black carbon to the composite aerosol radiative forcing over an urban environment. Atmospheric Environment 44: 3066–3070.


[17] Panicker AS, Pandithurai G, Dipu S. (2010b). Aerosol indirect effect during successive contrasting monsoon years over Indian sub-continent: using MODIS data. Atmospheric Environment 44: 1937–1943, DOI: 10. 1016/j. atmosenv. 2010. 02. 015.


[18] Ramanathan V, Crutzen PJ. (2003), New directions; atmospheric brown clouds. Atmospheric Environment 37: 4033–4035.


[19] Takamura T, Sugimoto N, Shimizu A, Uchiyama A, Yamazaki A, Aoki K, Nakajima T, Sohn BJ, Takenaka H. (2007).

[20] Thomas, G. E., Poulsen, C. A., Siddans, R., Sayer, A. M., Carboni, E., Marsh, S. H., Dean, S. M., Grainger, R. G., and Lawrence, B. N.: (2010).

[21] Twomey S. (1977). The influence of pollution on the shortwave albedo of clouds. Journal of Atmospheric Science 34: 1149–1152.


[22] Vignati, E., G. de Leeuw, and R. Berkowicz (2001), Modeling coastal aerosol transport and effects of surf produced aerosols on process in the marine boundary layer, J. Geophys. Res., 106, 20, 225 – 20, 238, doi: 10. 1029/2000JD000025.


[23] Yoon, J., von Hoyningen-Huene, W., Vountas, M., and Burrows, J. P. (2011).

[24] Yu, H., Chin, M., Remer, L. A., Kleidman, R. G., Bellouin, N., Bian, H., and Diehl, T. (2009).

[25] Zhang, J. and Reid, J. S. (2010).

Show More Hide
Cited By:
This article has no citations.