Paper Titles in Periodical
International Letters of Chemistry, Physics and Astronomy
ILCPA Volume 50

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > ILCPA Volume 50 > Mathematical Gateway to Complementary Hidden...
< Back to Volume

Mathematical Gateway to Complementary Hidden Variables in Macrophysics

Full Text PDF


It is shown that even physically meaningful and experimentally confirmed formulas of physics and mathematics can be extended by enabling some previously unrecognized (or considered as just fixed) parameters to either vary independently and thus reveal them as previously hidden variables or to turn them into fixed exposure functions whose cumulative impact varies along yet another formerly hidden variable. Uncovering of hidden variables requires (new) synthetic approach to mathematics. The need for revealing hidden variables is prompted mainly by unanticipated experimental results, whose more precise outcomes apparently challenge the previously espoused paradigms upon which those simpler former formulas had been established. Operational rules of calculus can reveal the hidden variables that could extend the laws of classical physics whose predictions disagree with new experimental evidence. Presence of such variables has already been confirmed in several experiments.


International Letters of Chemistry, Physics and Astronomy (Volume 50)
J. Czajko, "Mathematical Gateway to Complementary Hidden Variables in Macrophysics", International Letters of Chemistry, Physics and Astronomy, Vol. 50, pp. 117-142, 2015
Online since:
May 2015

Czajko J. On conjugate complex time II: Equipotential effect of gravity retrodicts differential and predicts apparent anomalous rotation of the Sun. Chaos, Solit. Fract. 11 (2000) 2001-(2016).

Czajko J. Path-independence of work done theorem is invalid in center-bound force fields. Stud. Math. Sci. 7(2) (2013) 25-39.

Smolin L. Time, laws, and the future of cosmology. Phys. Today March 2014 38-43.

Szekeres G. Effect of gravitation on frequency. Nature 220 (1968) 1116-1168.

Czajko J. Operational constraints on dimension of space imply both spacetime and timespace. International Letters of Chemistry, Physics and Astronomy 17(2) (2014).

Czajko J. Operational restrictions on morphing of quasi-geometric 4D physical spaces. International Letters of Chemistry, Physics and Astronomy 2 (2015) 45-72 http: /www. ilcpa. pl/wpcontent/uploads/2014/09/ILCPA-2-2015-45-72. pdf.

Czajko J. Linear magnitudes estimated via energy were likely overestimated by over 3. 48%. International Letters of Chemistry, Physics and Astronomy 13(1) (2014) 32-41 http: /www. ilcpa. pl/wp-content/uploads/2013/10/ILCPA-131-2014-32-41. pdf.

Czajko J. Galilei was wrong: Angular nonradial effects of radial gravity depend on density of matter. International Letters of Chemistry, Physics and Astronomy 11(2) (2014).

Czajko J. Equipotential energy exchange depends on density of matter. Stud. Math. Sci. 7(2) (2013) 40-54. http: /cscanada. net/index. php/sms/article/view/j. sms. 1923845220130702. 2752/5336.

Czajko J. Operationally complete work done suggests presence of potentials corresponding to repulsive forces. International Letters of Chemistry, Physics and Astronomy 18 (2014).

Lord Kelvin & Guthrie P. Treatise on natural philosophy. Cambridge: At the Univ. Press, 1903, p. 238f.

Apostol T.M. Calculus I. One-variable calculus with an introduction to linear algebra. Waltham, MA: Blaisdell Publishing, 1967, p.546.

Sadeh D., Knowles S.H. & Yaplee B.S. Search for a frequency shift of the 21-centimeter line from Taurus A near occultation by Sun. Science 159 (1968) 307-308.

Sadeh D., Knowles S. & Au B. The effect of mass on frequency. Science 161 (1968) 567-569.

Gibilisco S. Mathematical and physical data, equations and rules of thumb. New York: McGraw-Hill, 2001, p.374.

Birkhoff G. (Ed. ) A source book in classical analysis. Cambridge, MA: Harvard Univ. Press, 1973, p.335, 360.

Czajko J. Radial and nonradial effects in Frenet frame. Appl. Phys. Res. 3(1) (2011) 2-7 http: /ccsenet. org/journal/index. php/apr/issue/view/341.

Czajko J. (1990) On the Hafele-Keating experiment. Ann. Phys. (Leipzig) 47 517-518.

Czajko J. (1991) Experiments with flying atomic clocks. Exper. Tech. Phys. 39 145-147.

Adler C.G. & Coulter B.L. Galileo and the tower of Pisa experiment. Am. J. Phys. 46(3) (1978) 199-201.

Ginocchio J.N. A class of exactly solvable potentials II. The three-dimensional Schrӧdinger equation. Ann. Phys. (New York) 159 (1980) 467-480, see p.480.

Antognini A. et al. Proton structure from the measurement of 2s-2p transition frequencies of muonic hydrogen. Science 339(6118) (2013) 417-420.

Strang G. Calculus. Wellesley, MA: Wellesley-Cambridge Press, 2010, p.91.

Zeidler E. Applied functional analysis. Main principles and their applications. New York: Springer, 1995, p.228.

Guichard D. Calculus. Early Transcendentals. http: /www. whitman. edu/mathematics/multivariable/multivariable. pdf p.91.

Marsden J. & Weinstein A. Calculus III. New York: Springer, 1985, p. 901f.

Larson R.E. & Hostetler R.P. Calculus with analytic geometry. Lexington, MA: D.C. Heath & Co., 1986, p. 982ff.

Thomas G.B. Jr. & Finney R.L. Calculus and analytic geometry part II. Reading, MA: Addison-Wesley, 1996, p. 1081f.

Kreyszig E. Advanced engineering mathematics. New York: Wiley, 1999, p. 26ff.

Stein S.K. & Barcellos A. Calculus and analytic geometry. New York: McGraw-Hill, 1992, p.997.

Goursat É. & Hedrick E.R. A course in mathematical analysis I. Boston: Ginn & Co., 1904, p.42.

Silverman R.A. Essential calculus with applications. New York: Dover, 1989, p.140.

Mermin N.D. Hidden variables and the two theorems of John Bell. Rev. Mod. Phys. 65(3) (1993) 803-815 see p.814.

Bell J.S. John S. Bell on the foundations of quantum mechanics. Singapore: World Scientific, 2001, p. 148ff.

Vessot R.F.C. et al. Test of relativistic gravitation with a space-borne hydrogen maser. Phys. Rev. Lett. 45(26) (1980) 2081-(2084).

Merat P, Observed Deflection of Light by the Sun as a Function of Solar Distance. Astron. Astrophys. 32 (1974) 471-475.


Dyson F, Relativity and the eclipse observation of May 1919. Nature 106 (1921) 786787.

Hafele J.C. & Keating R.E. Around-the-World Atomic Clocks: Predicted Relativistic Time Gains. Science 177 (4044) (1972) 166-168.

Hafele J.C. & Keating R.E. Around-the-World Atomic Clocks: Observed Relativistic Time Gains. Science 177 (4044) (1972) 168-170.

Alley C. P. Proper Time Experiments in Gravitational Fields with Atomic Clocks, Aircraft, and Laser Light Pulses. [pp.363-427.

Lorentz H.A. The Einstein theory of relativity. A concise statement. New York: Brentano's Publishers, 1920, p.22.

Einstein A. The Foundations of the General Theory of Relativity. [pp.111-164 in: H.A. Lorentz et al. The principle of relativity. New York: Dover, 1923, see p.161].

Boghossian A. Harmonic extensions of real analytic functions. London Math. Soc. (2) 20 (1979) 273-276.

Choquet G. Lectures on analysis III. Infinite dimensional measures and problem solutions. Reading, MA: Benjamin, 1976, p.74.

Hoskins R.F. Generalized functions. Chichester: Ellis Horwood, 1979, p. 27f.

Rogawski J. Calculus. New York: Freeman, 2008, p.147.

Heyting A. Axiomatic projective geometry. Groningen: Noordhoff, 1980, p.5.

Vopěnka P. Mathematics in the alternative set theory. Leipzig: Teubner, 1979, p.10.

Choquet G. Geometry in modern setting. Paris: Hermann, 1969, p.14.

Jolly R.F. Synthetic geometry. New York: Holt, Rinehart & Winston, 1969, p.10.

Pedoe D. Thinking geometrically. Am. Math. Mon. 77 (1970) 711.

MacLane S. Possible programs for categorists. [pp.123-131 in: Dold A. & Eckman B. (Eds. ) Category theory, homology theory and their applications I. Berlin: Springer, 1969].

Gödel K. Discussion on providing a foundation for mathematics. [pp.201-205 in Feferman S. et al. (Eds. ) Kurt Gödel collected works I. New York: Oxford Univ. Press, 1986].

Stokes G.G. Memoir and scientific correspondence I. New York: Johnson Reprint Corp., 1971, p.386.

Broyles J. Geometry, semantics and space. Philos. Math. 3(1) (1966) 9-16, see p.11.

Dedekind R. Ein Satz aus der Theorie der dreiaxigen Coordinatensysteme. J. reine angew. Math. 50 (1855) 272.

Nagata J. Modern dimension theory. Berlin: Heldermann Verlag, 1983, p.8.

Engelking R. Dimension Theory. Amsterdam: North-Holland, 1978, p. 3ff.

Engelking R. General Topology. Berlin: Heldermann Verlag, 1989, p.382.

Pontryagin L.S. Foundations of combinatorial topology. Rochester, NY: Graylock Press, 1952, p.17.

Alexandroff P. Über den allgemeinen Dimensionsbegriff und seine Beziehungen zur elementaren geometrischen Anschauung. Math. Ann. 98 (1928) 617-635.

Alexandroff P. & Hopf H. Topologie. New York: Chelsea, 1965, p.363.

Johannson K. Topologie und Geometrie von 3-Mannigfaltigkeiten. Jber. Dt. Math. -Verein 86 (1984) 37-68.

Hausdorff F. Zwischen Chaos und Kosmos oder vom Ende der Mataphysik. Baden-Baden: Agis Verlag, 1976, p.103.

Ekeland I. Mathematics and the unexpected. Chicago: The Univ. of Chicago Press, 1988, p.97.

Woodcock A. & Davis M. Catastrophe theory. New York: E.P. Dutton, 1978, p.10.

Lu Y. -C. Singularity theory and an introduction to catastrophe theory. New York: Springer, 1976, p.53, 88f, 102.

Thom R. Quid des stratifications canoniques. [pp.375-381 in: Brasselet J. -P. (Ed. ) Singularities. Lille 1991. Cambridge: Cambridge Univ. Press, 1994, see p.376].

Thom R. Modelès mathématiques de la morphogenèse. Paris: Christian Burgois Éditeur, 1980, p.91.

Thom R. Structural stability and morphogenesis. Reading, MA: Benjamin, (1975).

Gilmore R. Catastrophe Theory for Scientists and Engineers. New York: Dover, 1993, p.58, 644.

Thom R. Apologie du logos. Paris: Hachette, 1990, p. 375ff.

Shaw R. Octonions without Octonions. [pp.169-175 in: Doebner H. -D., Henning J.D. & Palev T.D. (Eds. ) Group-theoretical methods in physics. Berlin: Springer, 1988].

Rauscher E.A. Minkowski metric for a multidimensional geometry. Lett. N. Cim. 7(10) (1973) 361-367.

De Vries H. Die vierte Dimension. Leipzig: 1926, p.22.

Thompson R.C. & Yaqub A. Introduction to linear algebra. Glenview, IL: Scott, Foresman & Co., 1970, p.53.

Pettofrezzo A.J. Vectors and their applications. Englewood Cliffs, NJ: Prentice-Hall, 1966, p.70.

Roth J.P. & Scott D.S. A vector method for solving linear equations and inverting matrices. J. Math. Phys. 35 (1956) 312.

Randé B. Espaces vectoriels de n(n+1)/2 constitués de matrices diagonalisables. Rev. Math. Spec. 7 (1991-92) 345-348.

Abhyankar S.S. Lectures on algebra I. Singapore: World Scientific, 2006, p.104.

Vinberg E.B. A course in algebra. Providence, RI: AMS, 2003, p.49.

Newton I. Principia. Edited and commented by Stephen Hawking. Philadelphia: Running Press, 2002, p.1, 11. 197, 321.

Wheeler, J.A. Particles and geometry. [pp.31-42 in: Carmeli M., Fickler S.I. & Witten L. (Eds. ) Relativity. New York: Plenum Press, 1970, see p.37, 32 ].

Thorne K.S. Gravitational collapse and the death of a star. Science 150(3704) (1965) 16711679, see p.1674.

Bellone E. A world on paper. Studies on the Second Scientific Revolution. Cambridge, MA: The MIT Press, 1980, p. 29f.

Shapiro M.S. (Ed. ) Mathematics encyclopedia. Garden City, NY: Doubleday, 1977, p. 186ff.

Dieudonné J. Treatise on analysis III. New York: Academic Press, 1972, p. 303ff.

LSU (Louisiana State University), LSU Center for Academic Success. New Bloom's Taxonomy Pyramid. http: /www. biology. lsu. edu/heydrjay/Bloom's%20Taxonomy. gif [last seen on 14-Sep2009].

Dieudonné J. Treatise on analysis II. New York: Academic Press, 1976, p.10. ( Received 14 April 2015; accepted 27 April 2015 ).

Show More Hide
Cited By:
This article has no citations.