Paper Titles in Periodical
International Letters of Chemistry, Physics and Astronomy
Volume 50
Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 50 > Mesomorphism Dependence on Molecular Flexibility...
< Back to Volume

Mesomorphism Dependence on Molecular Flexibility at Constant Rigidity

Full Text PDF

Abstract:

A Novel homologous series of high transition temperature RO-C6H4-CH=CH-COO-C6H4-N=CH-CH=CH-C6H5 has been synthesis and studied with a view to understand establish and evaluate the relation between liquid crystal properties and the molecular structure of a substance. A series consists of thirteen homologues. All the homologues are mesogenic. Smectic mesophase commences from C12 to C18 homologues. Nematic mesophase appears from C1 to C18 homologues. The textures of a nematic phases are of threaded or schlieren and that of the smectic phase are focal conic fan shaped of smectic-A or C type. Transition temperatures and textures were determined by an optical polarizing microscopy equipped with a heating stage. The analytical and spectral data confirms the molecular structures of homologues. Thermal stability for smectic and nematic are 118.5 0C and 224.77 °C, whose total mesophase length ranger from 73.0 °C to 111 °C. The liquid crystal properties from homologue to homologue varies in the same series. Some liquid crystal properties of present series are compared with the structurally similar known homologous series. Present novel homologous series is partly smectogenic and fully nematogenic and of higher ordered melting type and high thermal stability

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 50)
Pages:
1-8
Citation:
D.T. Pidwani et al., "Mesomorphism Dependence on Molecular Flexibility at Constant Rigidity", International Letters of Chemistry, Physics and Astronomy, Vol. 50, pp. 1-8, 2015
Online since:
May 2015
Export:
Distribution:
References:

[1] Naemura, S. (2001). Advance LCD technologies, Displays, 22 (1), 1.

[2] Kim W.S., Elston, S.J., & Raynes, F.P. (2008). Display, 29, 458-463.

[3] Talwa, I., Dr. Salnana Shahi, Ramteke,V. & Syed, I. (2012). Liquid crystal Pharmaceutical Application: A Review", "IJPRAS, International journal of Pharmaceutical Research and Allied Science, 1(2), 06-11.

[4] Hertz, E., Laorel, B., &Faucher,O. (2011). Nature photon, 5, 78-79.

[5] Gray, G. W., & Windsor, P.A. (1974). Liq. Cryst. Plastic Cryst., Ellis Horwood: Chichester, U.K., 1 (4), 103-153.

[6] Gray, G. W. (1962). Molecular Structure and the Properties of Liquid Crystal. Academic Press: London.

[7] Imrie, C.T. (1999). Liquid crystal dimers, Structure, Bond, 95, 149-192.

[8] Gray, G. W., & Windsor, P. A. (1974). Liq. Cryst. and Plastic Cryst., The role of liquid crystals in life processes by Stewart G.T., 1, 308-326.

[9] Mrie, C.T. & Luckhrust, G.R. (1998). Liquid Crystal dimers and oligomers: Handbook of liquid crystal, law molecular liquid crystals, 2B, Demus,D., Goodly, J.W., Spiess, H.W. and Vill,V., willey-VCH, weinhei, 801-833.

DOI: https://doi.org/10.1002/9783527619276.ch7c

[10] Demls, D. (1988). 100 years of Liquid Crystal Chemistry, Mol. Cryst. Liq. Cry., 165, pp.45-84.

[11] Demus, D. (1989). Plenary lectures 100 years of Liquid Crystal Chemistry, Thermotropic liquid crystals with conventional and unconventional molecular structure, Liq. Cry., 5, pp.75-110.

DOI: https://doi.org/10.1080/02678298908026353

[12] Doshi et al (i) Suthar, D.M. & Doshi, A.V. (2013).

[13] Suthar, D.M., Doshi, A.A., & Doshi, A.V., (2013). Mo. Cryst. Liq. Cryst., 582, 79-87.

[14] Travadi, J. J., Bhoya, U. C., & Doshi, A. V. (2012). Determination of Transition Temperatures of Non-mesomorphism by extrapolation method in Binary Systems, Mol. Cryst. Liq. Cry., 552, 10-15.

[15] Bhoya, U. C., Vyas, N. N., & Doshi, A. V. (2012). Mol. Cryst. Liq. Cryst., 552, 104-110.

[16] Patel, B.H., & Doshi, A. V. (2014). M‏ol Cryst. Liq Cryst., 605, 23-31.

[17] Patel, B.H., & Doshi, A. V. (2015). M‏ol Cryst. Liq Cryst., 607, 78-86.

[18] Patel, B.H., & Doshi, A. V. (2015). M‏ol Cryst. Liq Cryst., 608, 38-46.

[19] Hird, M., Toyne, K. J., Gray, G. W., Day, S. E., & Mc Donnell, D. G. (1993). Liq. Cryst., 15, 123.

[20] Collings, P.J., & Hird, M. (1998). Introduction to liquid crystals chemistry and physics, Taylor and Fransis Ltd, U. K.

[21] Marcos, M., Omenat, A., Serrano, J. L. & Ezcurra, A. (1992). Adv. Mater., 4, 285.

[22] Ird, M., Toyne, K. J., & Gray, G. W. (1993). Liq. Cryst., 14, 741.

[23] Aurangzeb Hasan, Asghar Abbas and Muhammed Nadeem Akhtar, (2011). Molecules, vol. 16, pp.7789-7802.

DOI: https://doi.org/10.3390/molecules16097789

[24] (a) Jordan, Angela, (2007). Journal of Labelled Compounds and Radiopharmaceuticals, 50(5-6), pp.338-341. (b)Yang, Xian-Hui (2012). Bioorganic & Medicinal Chemistry, 20(3), pp.1181-1187.

[25] Patel, R. B., Patel, V. R., & Doshi, A. V. (2012). Mol. Cryst. Liq. Cryst., 552, 3–9.

[26] (a) Greene, T. W.; Wuts, P. G. M. (1991). Protective Groups in Organic Synthesis, 2nd Ed.; John Wiley and Sons: New York. (b) Kocienski, P. J. Protecting Groups; Georg Thieme: Stuttgart, (1994).

[27] Hauhan, H. N & Doshi, A.V. (2012). Der Pharma Chemica, 4(3), 977-983.

[28] Patel, B.H., & Doshi, A. V. (2014). M‏ol Cryst. Liq cryst., 605, 42-51. ( Received 15 April 2015; accepted 29 April 2015 ).

Show More Hide
Cited By:
This article has no citations.