Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 5 > Oxidation of α,β-Unsaturated Alcohols by...
< Back to Volume

Oxidation of α,β-Unsaturated Alcohols by Quinaldinium Fluorochromate

Full Text PDF


The kinetics of oxidation of α,β-unsaturated alcohols (allyl alcohol, Crotyl alcohol, Cinnamyl alcohol) by quinaldinium fluorochromate has been studied in aqueous acid medium at 313 K. α,β-unsaturated alcohols were converted to the corresponding acrolein, crotonaldehyde and cinnamaldehyde. The reaction is first order each in oxidant, substrate and H+. The decrease in dielectric constant of the medium increases the rate of the reaction. Increase in ionic strength by the addition of sodium perchlorate has no effect on the rate constant. There is no polymerization with acrylonitrile. The reaction has been conducted at four different temperatures and activation parameters were calculated. From the observed kinetic results a suitable mechanism consistent with rate law has been proposed. The relative reactivity order was found to be Cinnamyl alcohol > Crotyl alcohol > Allyl alcohol.


International Letters of Chemistry, Physics and Astronomy (Volume 5)
G. S. Krishnamoorthy and S. K. Periyasamy, "Oxidation of α,β-Unsaturated Alcohols by Quinaldinium Fluorochromate", International Letters of Chemistry, Physics and Astronomy, Vol. 5, pp. 8-19, 2012
Online since:
Sep 2013

[1] J. Muzart, Chem. Rev. 92(1) (1992) 113-140.

[2] A. Kothari , S. Kothari and K. K. Banerji, Indian. J. Chem. 44A (2005) 2039-(2043).

[3] S. A. Chimatadar, M. S. Salunke, S.T. Nandibewoor, Indian. J. Chem. 45A (2006) 388-393.

[4] M. Hudlicky, Oxidation inorganic chemistry/reductions in organic chemistry, 1, 2nd Ed., Washington: ACS Monograph, ACS, (1990), 186.

[5] L. Fieser and M. Fieser, Reagents for organic synthesis, New York, John Wiley and Sons, (1967), 144.

[6] G. Cainelli and G. Cardillo, Chromium oxidation in organic chemistry, Springer- Verlag, New York, (1984).

[7] Dandinasivara S. Mahadevappa, Hanumanthanaidu M. K. Naidu, Aust. J. Chem. 28 (1975) 899-901.

[8] K. Ganapathy, B. Vijayan, Proc. Indian Acad. Sci. 87A (1978) 215-217.

[9] Iftikhar Ahmad, C. Muhammad asraf, Int. J. Chem. Kinet. 11(8) (1979) 813-819.

[10] AN. Palaniappan, K.G. Sekar, M. Ravishankar, Oxid. Commun. 18(1) (1995) 52-55.

[11] S. M. Desai, N. N. Halligudi, S. T. Nandibewoor, Int. J. Chem. Kinet. 31(8) (1999) 583-589.

[12] S. M. Desai, N. N. Halligudi, S. T. Nandibewoor, Transition metal chemistry 27(2) (2002) 207 – 212.

[13] S. A. Chimatadar, S. B. Koujalagi, S. T. Nandibewoor, Oxid. Commun. 27(1) (2004) 81-89.

[14] K. G. Sekar, M. Vellaisamy, Der chemica sinica 3(3) (2012) 703-707.

[15] Nebahat Degirmenbasi, Beytiye Ozgun, Monatshefte fur Chemie (2004) 407-410.

[16] B. Bhatacharjee, M. N. Bhatacharjee, M. Bhatacharjee, A. K. Bhatacharjee, Int. J. Chem. Kin. 17 (1985) 629-636.

[17] J. E. Quinlan, E. S. Amis, J. Am. Chem. Soc. 77 (1955) 4187- 4191.

[18] E. S. Amis : Solvent effects on reaction rates and mechanism, Academic press, New York, (1966) 42.

[19] S. Banfi, M. Cavazzini, G. Pozzi, S. V. Barkanova, O. L. Kaliya, J. Chem. Soc. Perkin Trans. 2 (2000) 871-877.

[20] A. A. Frost, R.G. Pearson, Kinetics and Mechanism, Wiley Eastern NewDelhi, (1970).

[21] R. C. Petersen, J. Org. Chem. 29 (1964) 3133-3135.

[22] J. E. Leffler, J. Chem. Phys. 23 (1955) 2199-2205.

[23] O. Exner, Nature 201 (1964) 488 - 490.

Show More Hide