Synthesis and antimicrobial screening of 2'-amino-4''-[2-(4'-chlorophenyl) -6-methyl imidazo[1, 2-a]pyridine -3-yl]- 6''-aryl-4''-H-pyran-3''- carbonitrile

V. V. Bhuva, V. N. Bhadani, H. D. Purohit, D. M. Purohit*
Shree M. & N. Virani Science College, Department of Chemistry, Kalawad Road, Rajkot-360005, Gujarat, India

*E-mail address: purohitdm@yahoo.com

Keywords: Cyanopyrans; antibacterial activity; antifungal activity

ABSTRACT

3-Cyano-4,6-disubstituted 4H-pyranes are endowed with a variety of pharmacodynamic activities. Looking to the interesting properties of cyanopyrans, it was considered worthwhile to synthesis some new 2'-amino-4''-[2-(4'-chlorophenyl) -6-methyl imidazo [1,2-a] pyridin-3-yl]-6''-aryl- 4''-H-pyran-3''- carbonitrile (4a-4l) have been synthesized. The products have been assayed for their biological activity against Gram +ve, Gram –ve bacteria and fungi. Some of the products showed moderate activity in concentration 50μg/mL. The structures of the products have been elucidated by IR, 1H-NMR, Mass spectral data, elemental analysis and thin layer chromatography.

1. INTRODUCTION

Imidazo[1 ,2-a] pyridines are potential bioactive agents due to their wide spectrum of therapeutic importance. A large number of substituted imidazo[1,2–a]pyridine derivatives are prepared and tested for varieties of biological activities such as, Antifungal13, Antiallergic4, Analgesic5, Antagonist6,7, Antitumor8, CNS active agent9, Cytotoxic10, Inhibitors of cell proliferation11, Gastric acid secretion inhibitor12, Antimicrobial13, Hypolipidemic14, Antipyretic15 etc. In view of getting to synthesized imidazo[1,2-a] pyridines derivatives and evaluated for their antimicrobial activity.

Heterocyclic compounds such as pyran derivatives continue to be a rich source of innovative chemistry because a number of pharmaceutical, dyestuffs, sweaty-smelling substances, insecticide possess this ring system. Pyran ring system is also present in large number of naturally occurring colored compounds, in vitamin-E, hemorrhagic compounds in cloves, in certain alkaloids and other substances.

Pyran is a doubly unsaturated six member ring system with single oxygen as hetero atom. The two double bonds may be conjugated as α, β or 1,2-pyran or isolated as in α, δ or 1,4-pyran. A degree of stabilization of the pyran nucleus is achieved by substituting phenyl group in the 2 or 4 and preferably also in the 6 position.

Cyanopyrans have been synthesized by the Condensation of 2 - (4' – chlorophenyl) – 6 – methyl–3 [1''-aryl-2''-prop-en-1''-ones-3-yl]imidazo[1,2-a] pyridines with malononitrile. The products (4a-4l) were assigned the IR, 1H-NMR, Mass spectral data, elemental analysis and TLC. The physical data and antimicrobial activities are represented in Table – I.

2. ANTIMICROBIAL ACTIVITY

2''-amino-4''-[2-(4''-chlorophenyl) -6-methyl imidazo [1, 2-a] pyridin-3-yl]-6''-aryl- 4''-H-pyran-3''- carbonitrile (4a-4l) products were evaluated in vitro for their antibacterial activities against Gram +ve and Gram –ve bacteria such as Bacillus megaterium, Salmonella taphimurium, staphylococcus aureus, Escherichia coli and antifungal activity against Aspergillus niger using DMF as solvent at 50 μg / ml. concentration by cup-plate method15. After 24 hrs of incubation at
37°C, the zones of inhibition were measured in mm. The activity was compared with the known standard drugs, viz., ampicillin, chloramphenicol, norfloxacin, gresiofulvin at same concentration. All the synthesized compounds (4a-4l) showed moderate to good and remarkable activities with known standard drugs at the same concentration, which is represented in Table-I.
The physical data and antimicrobial activities of compounds (4a-4l). [Zone of Inhibition in mm]

<table>
<thead>
<tr>
<th>Compound ID</th>
<th>R</th>
<th>M.P. °C</th>
<th>Molecular Formula</th>
<th>% of Nitrogen</th>
<th>Antimicrobial Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B. meg</td>
</tr>
<tr>
<td>4a</td>
<td></td>
<td>180</td>
<td>C₂₀H₁₆Cl₆N₄O</td>
<td>12.72</td>
<td>12.77</td>
</tr>
<tr>
<td>4b</td>
<td>3-Cl-C₆H₄</td>
<td>165</td>
<td>C₂₀H₁₇Cl₅N₄O</td>
<td>11.84</td>
<td>11.83</td>
</tr>
<tr>
<td>4c</td>
<td>4-C₆H₄</td>
<td>155</td>
<td>C₂₀H₁₇Cl₅N₄O</td>
<td>11.84</td>
<td>11.83</td>
</tr>
<tr>
<td>4d</td>
<td>2,4-(Cl₂)C₆H₄</td>
<td>105</td>
<td>C₂₀H₁₇Cl₅N₄O</td>
<td>11.03</td>
<td>11.01</td>
</tr>
<tr>
<td>4e</td>
<td>4-E-C₆H₄</td>
<td>183</td>
<td>C₂₀H₁₇Cl₆N₄O</td>
<td>11.03</td>
<td>11.01</td>
</tr>
<tr>
<td>4f</td>
<td>4-B-C₆H₄</td>
<td>210</td>
<td>C₂₀H₁₇Cl₅N₄O</td>
<td>10.82</td>
<td>10.82</td>
</tr>
<tr>
<td>4g</td>
<td>4-Cl-C₆H₄</td>
<td>200</td>
<td>C₂₀H₁₇Cl₅N₄O</td>
<td>12.32</td>
<td>12.32</td>
</tr>
<tr>
<td>4h</td>
<td>4-Cl-C₆H₄</td>
<td>210</td>
<td>C₂₀H₁₇Cl₅N₄O</td>
<td>12.32</td>
<td>12.32</td>
</tr>
<tr>
<td>4i</td>
<td>4-Cl-C₆H₄</td>
<td>175</td>
<td>C₂₀H₁₇Cl₅N₄O</td>
<td>12.37</td>
<td>12.37</td>
</tr>
<tr>
<td>4j</td>
<td>4-Cl-C₆H₄</td>
<td>175</td>
<td>C₂₀H₁₇Cl₅N₄O</td>
<td>12.37</td>
<td>12.37</td>
</tr>
<tr>
<td>4k</td>
<td>4-Cl-C₆H₄</td>
<td>175</td>
<td>C₂₀H₁₇Cl₅N₄O</td>
<td>12.37</td>
<td>12.37</td>
</tr>
<tr>
<td>4l</td>
<td>3-NO₂-C₆H₄</td>
<td>177</td>
<td>C₂₀H₁₇Cl₅N₄O</td>
<td>14.97</td>
<td>14.97</td>
</tr>
</tbody>
</table>
3. EXPERIMENTAL SECTION

All the melting point was measured by open glass capillary method and are uncorrected. IR absorption spectra (ν max in cm⁻¹) were recorded on a shimadzu IR-435 spectrophotometer using KBr pellet method, ¹H-NMR spectra on Hitachi, R-1200 (300-MHz) spectrometer using DMSO-d6 method, as internal standard (chemical shift in, δ ppm) and mass spectra on a Joel 300 ev. The compounds were routinely checked by the TLC using silica gel-G.

[A] **Synthesis of 6-methyl-2-(4'-chlorophenyl)imidazo[1,2-a]pyridine (1)**

Arranged 1.0 lit 4/N RBF equipped with stirrer thermo pocket and condenser. Charge 100ml methanol and 21.3g (0.1 mole) (4-chlorophenyl)acetyl chloride and then charge 11.9g (0.1 mole) 2-amino-5-methylpyridine at room temperature stir till clear solution. Add drop wise triethyl amine at room temperature till pH adjust 8 to 9. After addition complete heat 60-65°C for 3 to 4 hrs. Then check TLC. After complies TLC cool reaction mass at room temperature and poured in 1.0 lit water & filter it. Yield 86%, m.p.200°C.

Anal. Calcd. For C₁₄H₁₁ClN₂ Require : C, 69.28, H, 4.53, N, 11.54 %; Found: C, 69.26, H, 4.52, N, 11.50 %. IR (KBr, cm⁻¹) : 2958 (C-H str, Sym.); 1466 (C-H def, asym.); 1568 (C-H def. asym.); 3650 (C-H Str. Aromatic); 801 (C-H Str, o.p.p def.); 1488 (C=C str.); 1350 (C-N str.); 760 (C-Cl Str.); 1648 (C=N Str.). ¹H-NMR (DMSO-d6, δ ppm): 2.3 (s, 3H, -CH₃); 7.02-7.94 (m, 8H, Ar-H). m/z: 44, 65, 77, 92, 110, 219, 242.

[B] **Synthesis of 6 - methyl - 2 - (4'-chlorophenyl) imidazo [1, 2-a] pyridine - 3 - carboxaldehyde (2)**

Arranged 2.0 lit 4/N RBF equipped with stirrer, thermo pocket and condenser in water bath. Charge 84 ml DMF and 1.0 lit CHCl₃ in RBF and cool at 0 - 5°C. Start drop wise addition of 165ml POCl₃ within 1.0 h (exothermic observe) stir 30 min at 0-5°C. Add 50g of 6-methyl-2-(4-chlorophenyl)imidazo[1,2-a]pyridine slowly temp raise till reflux for 6.0h. Remove CHCl₃ by vacuum distillation. Cool reaction mass at room temperature and poured in 2.0 lit ice cold water. Below room temperature pH adjust neutral by caustic solution. Filter and crystallized from methanol. Yield 70%, mp.180°C.

Anal. Calcd. For C₁₅H₁₂ClN₂O Require : C, 66.55, H, 4.10, N, 10.35 %; Found: C, 66.54, H, 4.08, N, 10.33 %; IR (KBr, cm⁻¹) : 2900 (C-H str, Sym.); 1369 (C-H def, sym.); 1475 (C-H def. asym.); 3650 (C-H Str. Aromatic); 799 (C-H, Str, o.p.p def.); 1508 (C=C str.); 1110 (C-N str.); 1715 (C=O); 2820-2750 (C-H Str.); 1680 (C=N): ¹H-NMR (DMSO-d6, δ ppm): 2.4 (s, 3H, -CH₃); 7.2-7.94 (m, 7H, Ar-H); 10.0 (s, CHO). m/z: 44, 56, 65, 79, 111, 129, 230, 256, 270.

[C] **Synthesis of 2-(4'-chlorophenyl)-6-methyl-3-[1''-(4''methylphenyl)-2''-propen-1''ones-3-yl]-imidazo[1,2-a]pyridine (3)**

Dissolve 6-methyl-2-(4'-chlorophenyl)imidazo[1,2-a]pyridine (3) in a mixture of methanol (50 ml) and DMF (50 ml). To this add p-methyl acetophenone (1.40g, 0.01 mol) and. Stir the content at room temperature for 24 hrs in presence of catalytic amount of 40% NaOH. The resulting solution was poured on to crushed ice, thus the solid separated was filtrated and crystallized from ethanol, Yield 56 %, m.p. 170°C.

Anal. Calcd. For C₂₂H₁₉ClN₃O Require : C, 74.51, H, 4.95, N, 7.24 %; Found: C, 74.50, H, 4.93, N, 7.22 %. IR(KBr, cm⁻¹): 2860 (C-H str, Sym.); 1470 (C-H def. asym.); 3640 (C-H Str. Aromatic); 750 (C-H, Str, o.p.p def.); 1530 (C=C str.); 1350 (C-N str.); 1693 (C=O); 650 (C-Cl Str.). ¹H-NMR (DMSO-d6, δ ppm): 2.43-2.44 (s, 6H, -CH₃); 7.22-8.14 (m, 13H, Ar-H). m/z: 44, 65, 91, 119, 292, 242, 267, 386.

Similarly other compounds (3a-3l) were prepared and their physical data are published in our continuous publication.

[E] **Synthesis of 2''-amino-4''-[2-(4'-chlorophenyl)-6-methylimidazo[1,2-a]pyridine-3-yl]-6''-(4''-methylphenyl)-4''-H-pyran-3''-carbonitrile(4)**

A mixture of 2-(4'-chlorophenyl)-6-methyl-3-[1''-(4''methylphenyl)-2''-propene-1''-one-3-yl]-imidazo[1,2-a]pyridine (2.74 gm, 0.01 mol) and malononitrile (0.66gm, 0.01 mol) in pyridine
(20 ml), was heated under reflux for 12 hrs on oil-bath. The reaction mixture was cooled and poured on to crushed ice. The product was neutralized with 20% HCl, where upon a solid separated out, which was filtered dried and crystallized from ethanol. Yield 65%, m.p.165°C

Anal. Calcd. For C27H21ClN4O: Required : C, 71.60; H, 4.67; N, 12.37%; found C, 71.58; H, 4.65; N, 12.35%. IR (KBr, cm−1): 2930 (C–H str., Sym,); 1359 (C–H def, sym.); 1444 (C–H def, asym.); 3051 (C–H str. Aromatic); 799 (C–H, str, o.p.p def.); 1487 (C=C str.); 1027 (C–N str.); 1228 (C–O–C); 2990-2850 (C–H Str.); 721(C=Cl). 1H-NMR (CDCl3, δ ppm); 2.2-2.3 (s, 3H, –CH3); 6.9-8.1 (m, 7H, Ar-H); m/z: 43, 78, 212, 242, 288, 305, 262, 437, 452.

Similarly, other 2”-amino-4”-[2-(4’-chlorophenyl)-6-methyl imidazo[1,2-a] pyridine-3-yl]-6”-aryl - 4”-H-pyran-3”- carbonitrile (4a-4l) were prepared. The physical data are recorded in Table No. I.

Table II

Compounds showing comparable antimicrobial activity with known standard drugs.

<table>
<thead>
<tr>
<th>Compound</th>
<th>B.maga</th>
<th>S.aureus</th>
<th>E.Coli</th>
<th>S.typhi</th>
<th>A.niger</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4a – 4l)</td>
<td>4c,4f,4h</td>
<td>4c,4f,4j,4k</td>
<td>4c,4h,4i,4j</td>
<td>4d,4f,4j,4k</td>
<td>4d,4e,4l</td>
</tr>
</tbody>
</table>

Activity of standard drugs.

<table>
<thead>
<tr>
<th></th>
<th>B.maga</th>
<th>S.aureus</th>
<th>E.Coli</th>
<th>S.typhi</th>
<th>A.niger</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.Ampicillin</td>
<td>22</td>
<td>19</td>
<td>19</td>
<td>22</td>
<td>---</td>
</tr>
<tr>
<td>2.Chloramphenicol</td>
<td>22</td>
<td>23</td>
<td>22</td>
<td>25</td>
<td>---</td>
</tr>
<tr>
<td>3.Norfloxacin</td>
<td>22</td>
<td>24</td>
<td>24</td>
<td>23</td>
<td>---</td>
</tr>
<tr>
<td>4.Gresiofulvin</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>22</td>
</tr>
</tbody>
</table>

4. Conclusion

2”-amino-4”-[2-(4’-chlorophenyl)-6-methylimidazo[1, 2-a] pyridine-3-yl]-6”-(4”-methylphenyl)-4”-H-pyran-3”-carbonitriles (4a-4l) have been synthesized. Some of the compounds 4c, 4d, 4f, 4h and 4k, showed good remarkable antibacterial and antifungal activity with compare to known standard drugs e.g. ampicillin, chloramphenicol, norfloxacin and gresiofulvin at same concentration 50μg/mL.

Acknowledgement:

The authors are thankful to management and principal Shree M. & N. Virani science college, Rajkot for providing research facilities.

References

[5]. P. Pere, G. Elisa; Span ES 511, 501, 1989

(Received 01 April 2015; accepted 13 April 2015)