Paper Titles in Periodical
International Letters of Chemistry, Physics and Astronomy
Volume 49
Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 49 > Progress and Challenges in the Direct Carbon Fuel...
< Back to Volume

Progress and Challenges in the Direct Carbon Fuel Cell Technology

Removed due to plagiarism

Full Text PDF

Abstract:

Fuel cells are under development for a range of applications for transport, stationary and portable power appliances. Fuel cell technology has advanced to the stage where commercial field trials for both transport and stationary applications are in progress. Direct Carbon Fuel Cells (DCFC) utilize solid carbon as the fuel and have historically attracted less investment than other types of gas or liquid fed fuel cells. However, volatility in gas and oil commodity prices and the increasing concern about the environmental impact of burning heavy fossil fuels for power generation has led to DCFCs gaining more attention within the global study community. A DCFC converts the chemical energy in solid carbon directly into electricity through its direct electrochemical oxidation. The fuel utilization can be almost 100% as the fuel feed and product gases are distinct phases and thus can be easily separated. This is not the case with other fuel cell types for which the fuel utilization within the cell is typically limited to below 85%. The theoretical efficiency is also high, around 100%. The combination of these two factors, lead to the projected electric efficiency of DCFC approaching 80% - approximately twice the efficiency of current generation coal fired power plants, thus leading to a 50% reduction in greenhouse gas emissions. The amount of CO2 for storage/sequestration is also halved. Moreover, the exit gas is an almost pure CO2 stream, requiring little or no gas separation before compression for sequestration. Therefore, the energy and cost penalties to capture the CO2 will also be significantly less than for other technologies. Furthermore, a variety of abundant fuels such as coal, coke, tar, biomass and organic waste can be used. Despite these advantages, the technology is at an early stage of development requiring solutions to many complex challenges related to materials degradation, fuel delivery, reaction kinetics, stack fabrication and system design, before it can be considered for commercialization. This paper, following a brief introduction to other fuel cells, reviews in detail the current status of the direct carbon fuel cell technology, recent progress, technical challenges and discusses the future of the technology.

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 49)
Pages:
109-129
Citation:
J. J. Chen et al., "Progress and Challenges in the Direct Carbon Fuel Cell Technology", International Letters of Chemistry, Physics and Astronomy, Vol. 49, pp. 109-129, 2015
Online since:
April 2015
Export:
Distribution:
References:

[1] Cooper J.F., Selman J.R., Analysis of the carbon anode in direct carbon conversion fuel cells. International Journal of Hydrogen Energy 37(24) (2012) 19319-19328.

DOI: https://doi.org/10.1016/j.ijhydene.2012.03.095

[2] Elleuch A., Boussetta A., Halouani K., Analytical modeling of electrochemical mechanisms in CO2 and CO/CO2 producing Direct Carbon Fuel Cell. Journal of Electroanalytical Chemistry 668 (2012) 99-106.

DOI: https://doi.org/10.1016/j.jelechem.2012.01.010

[3] Zhang L., Xiao J., Xie Y., Tang Y., Liu J., Liu M., Behavior of strontium- and magnesium-doped gallate electrolyte in direct carbon solid oxide fuel cells. Journal of Alloys and Compounds 608 (2014) 272-277.

DOI: https://doi.org/10.1016/j.jallcom.2014.04.154

[4] Munnings C., Kulkarni A., Giddey S., Badwal S.P.S., Biomass to power conversion in a direct carbon fuel cell. International Journal of Hydrogen Energy 39(23) (2014) 12377-12385.

DOI: https://doi.org/10.1016/j.ijhydene.2014.03.255

[5] Stähler M., Burdzik A., Calibration method for carbon dioxide sensors to investigate direct methanol fuel cell efficiency. Journal of Power Sources 262 (2014) 147-161.

DOI: https://doi.org/10.1016/j.jpowsour.2014.03.101

[6] Qi J., Benipal N., Chadderdon D.J., Huo J., Jiang Y., Qiu Y., Han X., Hu Y.H., Shanks B.H., Li W., Carbon nanotubes as catalysts for direct carbohydrazide fuel cells. Carbon 89 (2015) 142-147.

DOI: https://doi.org/10.1016/j.carbon.2015.03.029

[7] Bruno M.M., Viva F.A., Petruccelli M.A., Corti H.R., Platinum supported on mesoporous carbon as cathode catalyst for direct methanol fuel cells. Journal of Power Sources 278 (2015) 458-463.

DOI: https://doi.org/10.1016/j.jpowsour.2014.12.097

[8] Antunes R., Skrzypkiewicz M., Chronoamperometric investigations of electro-oxidation of lignite in direct carbon bed solid oxide fuel cell. International Journal of Hydrogen Energy 40(12) (2015) 4357-4369.

DOI: https://doi.org/10.1016/j.ijhydene.2015.01.135

[9] Giddey S., Kulkarni A., Munnings C., Badwal S.P.S., Composite anodes for improved performance of a direct carbon fuel cell. Journal of Power Sources 284 (2015) 122-129.

DOI: https://doi.org/10.1016/j.jpowsour.2015.02.158

[10] Lee J.-Y., Song R.-H., Lee S.-B., Lim T.-H., Park S.-J., Shul Y.G., Lee J.-W., A performance study of hybrid direct carbon fuel cells: Impact of anode microstructure. International Journal of Hydrogen Energy 39(22) (2014) 11749-11755.

DOI: https://doi.org/10.1016/j.ijhydene.2014.05.145

[11] Rady A.C., Giddey S., Kulkarni A., Badwal S.P.S., Bhattacharya S., Degradation Mechanism in a Direct Carbon Fuel Cell Operated with Demineralised Brown Coal. Electrochimica Acta 143 (2014) 278-290.

DOI: https://doi.org/10.1016/j.electacta.2014.07.088

[12] Bonaccorso A.D., Irvine J.T.S., Development of tubular hybrid direct carbon fuel cell. International Journal of Hydrogen Energy 37(24) (2012) 19337-19344.

DOI: https://doi.org/10.1016/j.ijhydene.2012.02.104

[13] Chien A.C., Corre G., Antunes R., Irvine J.T.S., Scaling up of the hybrid direct carbon fuel cell technology. International Journal of Hydrogen Energy 38(20) (2013) 8497-8502.

DOI: https://doi.org/10.1016/j.ijhydene.2012.10.097

[14] Ruflin J., Perwich Ii A.D., Brett C., Berner J.K., Lux S.M., Direct carbon fuel cell: A proposed hybrid design to improve commercialization potential. Journal of Power Sources 213 (2012) 275-286.

DOI: https://doi.org/10.1016/j.jpowsour.2012.04.048

[15] Liu J., Wang H., Wu C., Zhao Q., Wang X., Yi L., Preparation and characterization of nanoporous carbon-supported platinum as anode electrocatalyst for direct borohydride fuel cell. International Journal of Hydrogen Energy 39(12) (2014) 6729-6736.

DOI: https://doi.org/10.1016/j.ijhydene.2014.01.200

[16] Cao T., Wang H., Shi Y., Cai N., Direct carbon fuel conversion in a liquid antimony anode solid oxide fuel cell. Fuel 135 (2014) 223-227.

DOI: https://doi.org/10.1016/j.fuel.2014.07.007

[17] Yu X., Shi Y., Wang H., Cai N., Li C., Ghoniem A.F., Using potassium catalytic gasification to improve the performance of solid oxide direct carbon fuel cells: Experimental characterization and elementary reaction modeling. Journal of Power Sources 252 (2014) 130-137.

DOI: https://doi.org/10.1016/j.jpowsour.2013.12.021

[18] Salernitano E., Giorgi L., Dikonimos Makris T., Direct growth of carbon nanofibers on carbon-based substrates as integrated gas diffusion and catalyst layer for polymer electrolyte fuel cells. International Journal of Hydrogen Energy 39(27) (2014) 15005-15016.

DOI: https://doi.org/10.1016/j.ijhydene.2014.07.060

[19] Xu K., Chen C., Liu H., Tian Y., Li X., Yao H., Effect of coal based pyrolysis gases on the performance of solid oxide direct carbon fuel cells. International Journal of Hydrogen Energy 39(31) (2014) 17845-17851.

DOI: https://doi.org/10.1016/j.ijhydene.2014.08.133

[20] Li C., Shi Y., Cai N., Effect of contact type between anode and carbonaceous fuels on direct carbon fuel cell reaction characteristics. Journal of Power Sources 196(10) (2011) 4588-4593.

DOI: https://doi.org/10.1016/j.jpowsour.2011.01.039

[21] Kacprzak A., Kobyłecki R., Włodarczyk R., Bis Z., The effect of fuel type on the performance of a direct carbon fuel cell with molten alkaline electrolyte. Journal of Power Sources 255 (2014) 179-186.

DOI: https://doi.org/10.1016/j.jpowsour.2014.01.012

[22] Zhang J., Jiang X., Piao G., Yang H., Zhong Z., Simulation of a fluidized bed electrode direct carbon fuel cell. International Journal of Hydrogen Energy 40(8) (2015) 3321-3331.

[23] Yu J., Yu B., Li Y., Electrochemical oxidation of catalytic grown carbon fiber in a direct carbon fuel cell using Ce0.8Sm0.2O1.9-carbonate electrolyte. International Journal of Hydrogen Energy 38(36) (2013) 16615-16622.

DOI: https://doi.org/10.1016/j.ijhydene.2013.02.113

[24] Elleuch A., Yu J., Boussetta A., Halouani K., Li Y., Electrochemical oxidation of graphite in an intermediate temperature direct carbon fuel cell based on two-phases electrolyte. International Journal of Hydrogen Energy 38(20) (2013) 8514-8523.

DOI: https://doi.org/10.1016/j.ijhydene.2012.11.070

[25] Kulkarni A., Giddey S., Badwal S.P.S., Paul G., Electrochemical performance of direct carbon fuel cells with titanate anodes. Electrochimica Acta 121 (2014) 34-43.

DOI: https://doi.org/10.1016/j.electacta.2013.12.110

[26] Ju H., Uhm S., Kim J.W., Song R.-H., Choi H., Lee S.-H., Lee J., Enhanced anode interface for electrochemical oxidation of solid fuel in direct carbon fuel cells: The role of liquid Sn in mixed state. Journal of Power Sources 198 (2012) 36-41.

DOI: https://doi.org/10.1016/j.jpowsour.2011.09.082

[27] Borghei M., Scotti G., Kanninen P., Weckman T., Anoshkin I.V., Nasibulin A.G., Franssila S., Kauppinen E.I., Kallio T., Ruiz V., Enhanced performance of a silicon microfabricated direct methanol fuel cell with PtRu catalysts supported on few-walled carbon nanotubes. Energy 65 (2014) 612-620.

DOI: https://doi.org/10.1016/j.energy.2013.11.067

[28] Huang Y., Huang H., Liu Y., Xie Y., Liang Z., Liu C., Facile synthesis of poly(amidoamine)-modified carbon nanospheres supported Pt nanoparticles for direct methanol fuel cells. Journal of Power Sources 201(0) (2012) 81-87.

DOI: https://doi.org/10.1016/j.jpowsour.2011.10.112

[29] Deleebeeck L., Ippolito D., Hansen K.K., Enhancing Hybrid Direct Carbon Fuel Cell anode performance using Ag2O. Electrochimica Acta 152 (2015) 222-239.

DOI: https://doi.org/10.1016/j.electacta.2014.11.064

[30] Lee E.-K., Chun H.H., Kim Y.-T., Enhancing Ni anode performance via Gd2O3 addition in molten carbonate-type direct carbon fuel cell. International Journal of Hydrogen Energy 39(29) (2014) 16541-16547.

DOI: https://doi.org/10.1016/j.ijhydene.2014.03.180

[31] Li C., Lee E.K., Kim Y.-T., Lee D., Enhancing triple-phase boundary at fuel electrode of direct carbon fuel cell using a fuel-filled ceria-coated porous anode. International Journal of Hydrogen Energy 39(30) (2014) 17314-17321.

DOI: https://doi.org/10.1016/j.ijhydene.2014.08.028

[32] Lee C.-G., Kim W.-K., Oxidation of ash-free coal in a direct carbon fuel cell. International Journal of Hydrogen Energy 40(15) (2015) 5475-5481.

[33] Yu J., Zhao Y., Li Y., Utilization of corn cob biochar in a direct carbon fuel cell. Journal of Power Sources 270 (2014) 312-317.

DOI: https://doi.org/10.1016/j.jpowsour.2014.07.125

[34] Yu X., Shi Y., Wang H., Cai N., Li C., Tomov R.I., Hanna J., Glowacki B.A., Ghoniem A.F., Experimental characterization and elementary reaction modeling of solid oxide electrolyte direct carbon fuel cell. Journal of Power Sources 243 (2013) 159-171.

DOI: https://doi.org/10.1016/j.jpowsour.2013.05.149

[35] Dudek M., Tomov R.I., Wang C., Glowacki B.A., Tomczyk P., Socha R.P., Mosiałek M., Feasibility of direct carbon solid oxide fuels cell (DC-SOFC) fabrication by inkjet printing technology. Electrochimica Acta 105 (2013) 412-418.

DOI: https://doi.org/10.1016/j.electacta.2013.04.139

[36] Kim J.-P., Choi H.-K., Chang Y.-J., Jeon C.-H., Feasibility of using ash-free coal in a solid-oxide-electrolyte direct carbon fuel cell. International Journal of Hydrogen Energy 37(15) (2012) 11401-11408.

DOI: https://doi.org/10.1016/j.ijhydene.2012.04.162

[37] Dudek M., Tomczyk P., Socha R., Hamaguchi M., Use of ash-free Hyper-coal, as a fuel for a direct carbon fuel cell with solid oxide electrolyte. International Journal of Hydrogen Energy 39(23) (2014) 12386-12394.

DOI: https://doi.org/10.1016/j.ijhydene.2014.04.057

[38] Deleebeeck L., Arenillas A., Menéndez J.A., Kammer Hansen K., Hybrid direct carbon fuel cell anode processes investigated using a 3-electrode half-cell setup. International Journal of Hydrogen Energy 40(4) (2015) 1945-1958.

DOI: https://doi.org/10.1016/j.ijhydene.2014.12.012

[39] Choi S.H., Park D.-n., Yoon C.W., Yoon S.-P., Nam S.W., Hong S.-A., Shul Y.-G., Ham H.C., Han J., A study on the electrochemical performance of 100-cm2 class direct carbon-molten carbonate fuel cell (DC-MCFC). International Journal of Hydrogen Energy 40(15) (2015) 5144-5149.

DOI: https://doi.org/10.1016/j.ijhydene.2014.12.112

[40] Eom S., Ahn S., Rhie Y., Kang K., Sung Y., Moon C., Choi G., Kim D., Influence of devolatilized gases composition from raw coal fuel in the lab scale DCFC (direct carbon fuel cell) system. Energy 74 (2014) 734-740.

DOI: https://doi.org/10.1016/j.energy.2014.07.039

[41] Li X., Zhu Z., Chen J., De Marco R., Dicks A., Bradley J., Lu G., Surface modification of carbon fuels for direct carbon fuel cells. Journal of Power Sources 186(1) (2009) 1-9.

DOI: https://doi.org/10.1016/j.jpowsour.2008.09.070

[42] Zhang H., Chen L., Zhang J., Chen J., Performance analysis of a direct carbon fuel cell with molten carbonate electrolyte. Energy 68 (2014) 292-300.

[43] Yuan W., Zhou B., Hu J., Deng J., Zhang Z., Tang Y., Passive direct methanol fuel cell using woven carbon fiber fabric as mass transfer control medium. International Journal of Hydrogen Energy 40(5) (2015) 2326-2333.

DOI: https://doi.org/10.1016/j.ijhydene.2014.12.055

[44] Cinti G., Hemmes K., Integration of direct carbon fuel cells with concentrated solar power. International Journal of Hydrogen Energy 36(16) (2011) 10198-10208.

DOI: https://doi.org/10.1016/j.ijhydene.2010.11.019

[45] Gharibi H., Amani M., Pahlavanzadeh H., Kazemeini M., Investigation of carbon monoxide tolerance of platinum nanoparticles in the presence of optimum ratio of doped polyaniline with para toluene sulfonic acid and their utilization in a real passive direct methanol fuel cell. Electrochimica Acta 97 (2013) 216-225.

DOI: https://doi.org/10.1016/j.electacta.2013.01.121

[46] Elleuch A., Halouani K., Li Y., Investigation of chemical and electrochemical reactions mechanisms in a direct carbon fuel cell using olive wood charcoal as sustainable fuel. Journal of Power Sources 281 (2015) 350-361.

DOI: https://doi.org/10.1016/j.jpowsour.2015.01.171

[47] Jewulski J., Skrzypkiewicz M., Struzik M., Lubarska-Radziejewska I., Lignite as a fuel for direct carbon fuel cell system. International Journal of Hydrogen Energy 39(36) (2014) 21778-21785.

DOI: https://doi.org/10.1016/j.ijhydene.2014.05.039

[48] Wang H., Cao T., Shi Y., Cai N., Yuan W., Liquid antimony anode direct carbon fuel cell fueled with mass-produced de-ash coal. Energy 75 (2014) 555-559.

DOI: https://doi.org/10.1016/j.energy.2014.08.017

[49] Li C., Shi Y., Cai N., Mechanism for carbon direct electrochemical reactions in a solid oxide electrolyte direct carbon fuel cell. Journal of Power Sources 196(2) (2011) 754-763.

DOI: https://doi.org/10.1016/j.jpowsour.2010.07.076

[50] Zhou J., Ye X.F., Shao L., Zhang X.P., Qian J.Q., Wang S.R., A promising direct carbon fuel cell based on the cathode-supported tubular solid oxide fuel cell technology. Electrochimica Acta 74 (2012) 267-270.

DOI: https://doi.org/10.1016/j.electacta.2012.04.080

[51] Javadekar A., Jayakumar A., Pujara R., Vohs J.M., Gorte R.J., Molten silver as a direct carbon fuel cell anode. Journal of Power Sources 214 (2012) 239-243.

DOI: https://doi.org/10.1016/j.jpowsour.2012.04.096

[52] Cao J., Wang L., Song L., Xu J., Wang H., Chen Z., Huang Q., Yang H., Novel cathodal diffusion layer with mesoporous carbon for the passive direct methanol fuel cell. Electrochimica Acta 118 (2014) 163-168.

DOI: https://doi.org/10.1016/j.electacta.2013.11.140

[53] Dudek M., On the utilization of coal samples in direct carbon solid oxide fuel cell technology. Solid State Ionics 271 (2015) 121-127.

DOI: https://doi.org/10.1016/j.ssi.2014.09.034

[54] Xu X., Zhou W., Liang F., Zhu Z., Optimization of a direct carbon fuel cell for operation below 700 °C. International Journal of Hydrogen Energy 38(13) (2013) 5367-5374.

DOI: https://doi.org/10.1016/j.ijhydene.2013.02.066

[55] Zhao M., Zhang H., Hu Z., Zhang Z., Zhang J., Performance characteristics of a direct carbon fuel cell/thermoelectric generator hybrid system. Energy Conversion and Management 89 (2015) 683-689.

[56] Giddey S., Kulkarni A., Munnings C., Badwal S.P.S., Performance evaluation of a tubular direct carbon fuel cell operating in a packed bed of carbon. Energy 68 (2014) 538-547.

DOI: https://doi.org/10.1016/j.energy.2014.01.105

[57] Kouchachvili L., Ikura M., Performance of direct carbon fuel cell. International Journal of Hydrogen Energy 36(16) (2011) 10263-10268.

DOI: https://doi.org/10.1016/j.ijhydene.2010.10.036

[58] Li X., Zhu Z., De Marco R., Bradley J., Dicks A., Evaluation of raw coals as fuels for direct carbon fuel cells. Journal of Power Sources 195(13) (2010) 4051-4058. ( Received 02 April 2015; accepted 17 April 2015 ).

DOI: https://doi.org/10.1016/j.jpowsour.2010.01.048
Show More Hide
Cited By:
This article has no citations.