Paper Titles in Periodical
International Letters of Chemistry, Physics and Astronomy
Volume 47
Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 47 > Recent Development and Applications in Electrodes...
< Back to Volume

Recent Development and Applications in Electrodes for URFC

Paper was withdrawn due to plagiarism

Full Text PDF

Abstract:

The design of electrodes for URFC (unitised regenerative polymer electrolyte fuel cells) requires a delicate balancing of transport media. Gas transport, electrons and protons must be carefully optimised to provide efficient transport to and from the electrochemical reaction sites. This review is a survey of recent literature with the objective to identify common components and design and assembly methods for URFC electrodes, focusing primarily on the development of a better performing bifunctional electrocatalyst for the oxygen reduction and water oxidation. Advances in unitised regenerative fuel cells study have yielded better performing oxygen electrocatalysts capable of improving energy efficiency with longer endurance and less performance degradation over time. Fuel cells using these electrocatalyst have a possible future as a source of energy.

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 47)
Pages:
165-177
Citation:
J. J. Chen and D. G. Xu, "Recent Development and Applications in Electrodes for URFC", International Letters of Chemistry, Physics and Astronomy, Vol. 47, pp. 165-177, 2015
Online since:
February 2015
Export:
Distribution:
References:

[1] Zhou F., Andreasen S.J., Kær S.K., Yu D., Analysis of accelerated degradation of a HT-PEM fuel cell caused by cell reversal in fuel starvation condition. International Journal of Hydrogen Energy 40(6) (2015) 2833-2839.

DOI: https://doi.org/10.1016/j.ijhydene.2014.12.082

[2] Shukla S., Domican K., Karan K., Bhattacharjee S., Secanell M., Analysis of Low Platinum Loading Thin Polymer Electrolyte Fuel Cell Electrodes Prepared by Inkjet Printing. Electrochimica Acta 156(0) (2015) 289-300.

DOI: https://doi.org/10.1016/j.electacta.2015.01.028

[3] Zhang L., Zhu X., Kashima H., Li J., Ye D.-d., Liao Q., Regan J.M., Anolyte recirculation effects in buffered and unbuffered single-chamber air-cathode microbial fuel cells. Bioresource Technology 179(0) (2015) 26-34.

DOI: https://doi.org/10.1016/j.biortech.2014.11.106

[4] Hong T., Chen F., Xia C., Barium carbonate nanoparticle as high temperature oxygen reduction catalyst for solid oxide fuel cell. Electrochemistry Communications 51(0) (2015) 93-97.

DOI: https://doi.org/10.1016/j.elecom.2014.12.017

[5] Wang J., Barriers of scaling-up fuel cells: Cost, durability and reliability. Energy 80(0) (2015) 509-521.

DOI: https://doi.org/10.1016/j.energy.2014.12.007

[6] Altmann S., Kaz T., Friedrich K.A., Bifunctional electrodes for unitised regenerative fuel cells. Electrochimica Acta 56(11) (2011) 4287-4293.

DOI: https://doi.org/10.1016/j.electacta.2011.01.077

[7] Banan R., Bazylak A., Zu J., Combined effects of environmental vibrations and hygrothermal fatigue on mechanical damage in PEM fuel cells. International Journal of Hydrogen Energy 40(4) (2015) 1911-1922.

DOI: https://doi.org/10.1016/j.ijhydene.2014.11.125

[8] Giddey S., Badwal S.P.S., Kulkarni A., Munnings C., A comprehensive review of direct carbon fuel cell technology. Progress in Energy and Combustion Science 38(3) (2012) 360-399.

DOI: https://doi.org/10.1016/j.pecs.2012.01.003

[9] Grigoriev S.A., Millet P., Dzhus K.A., Middleton H., Saetre T.O., Fateev V.N., Design and characterization of bi-functional electrocatalytic layers for application in PEM unitized regenerative fuel cells. International Journal of Hydrogen Energy 35(10) (2010) 5070-5076.

DOI: https://doi.org/10.1016/j.ijhydene.2009.08.081

[10] Grigoriev S.A., Millet P., Porembsky V.I., Fateev V.N., Development and preliminary testing of a unitized regenerative fuel cell based on PEM technology. International Journal of Hydrogen Energy 36(6) (2011) 4164-4168.

DOI: https://doi.org/10.1016/j.ijhydene.2010.07.011

[11] Abd El Monem A.A., Azmy A.M., Mahmoud S.A., Effect of process parameters on the dynamic behavior of polymer electrolyte membrane fuel cells for electric vehicle applications. Ain Shams Engineering Journal 5(1) (2014) 75-84.

DOI: https://doi.org/10.1016/j.asej.2013.05.001

[12] Roca-Ayats M., García G., Galante J.L., Peña M.A., Martínez-Huerta M.V., Electrocatalytic stability of Ti based-supported Pt3Ir nanoparticles for unitized regenerative fuel cells. International Journal of Hydrogen Energy 39(10) (2014) 5477-5484.

DOI: https://doi.org/10.1016/j.ijhydene.2013.12.187

[13] Nasani N., Ramasamy D., Antunes I., Perez J., Fagg D.P., Electrochemical behaviour of Ni-BZO and Ni-BZY cermet anodes for Protonic Ceramic Fuel Cells (PCFCs) - A comparative study. Electrochimica Acta 154(0) (2015) 387-396.

DOI: https://doi.org/10.1016/j.electacta.2014.12.094

[14] Bozbağ S.E., Gümüşoğlu T., Yılmaztürk S., Ayala C.J., Aindow M., Deligöz H., Erkey C., Electrochemical performance of fuel cell catalysts prepared by supercritical deposition: Effect of different precursor conversion routes. The Journal of Supercritical Fluids 97(0) (2015) 154-164.

DOI: https://doi.org/10.1016/j.supflu.2014.08.014

[15] Zhuo X., Sui S., Zhang J., Electrode structure optimization combined with water feeding modes for Bi-Functional Unitized Regenerative Fuel Cells. International Journal of Hydrogen Energy 38(11) (2013) 4792-4797.

DOI: https://doi.org/10.1016/j.ijhydene.2013.01.137

[16] Andrews J., Seif Mohammadi S., Towards a proton flow battery,: Investigation of a reversible PEM fuel cell with integrated metal-hydride hydrogen storage. International Journal of Hydrogen Energy 39(4) (2014) 1740-1751.

DOI: https://doi.org/10.1016/j.ijhydene.2013.11.010

[17] Gurrola M.P., Gutiérrez J., Rivas S., Guerra-Balcázar M., Ledesma-García J., Arriaga L.G., Evaluation of the corrosion of Sb-doped SnO2 supports for electrolysis systems. International Journal of Hydrogen Energy 39(29) (2014) 16763-16770.

DOI: https://doi.org/10.1016/j.ijhydene.2014.02.156

[18] Elmer T., Worall M., Wu S., Riffat S.B., Fuel cell technology for domestic built environment applications: State of-the-art review. Renewable and Sustainable Energy Reviews 42(0) (2015) 913-931.

DOI: https://doi.org/10.1016/j.rser.2014.10.080

[19] Meng X., Yan W., Yang N., Tan X., Liu S., Highly stable microtubular solid oxide fuel cells based on integrated electrolyte/anode hollow fibers. Journal of Power Sources 275(0) (2015) 362-369.

DOI: https://doi.org/10.1016/j.jpowsour.2014.11.027

[20] Deleebeeck L., Arenillas A., Menéndez J.A., Kammer Hansen K., Hybrid direct carbon fuel cell anode processes investigated using a 3-electrode half-cell setup. International Journal of Hydrogen Energy 40(4) (2015) 1945-1958.

DOI: https://doi.org/10.1016/j.ijhydene.2014.12.012

[21] Siracusano S., Baglio V., Stassi A., Ornelas R., Antonucci V., Aricò A.S., Investigation of IrO2 electrocatalysts prepared by a sulfite-couplex route for the O2 evolution reaction in solid polymer electrolyte water electrolyzers. International Journal of Hydrogen Energy 36(13) (2011) 7822-7831.

DOI: https://doi.org/10.1016/j.ijhydene.2010.12.080

[22] Kim K.N., Kang J.H., Lee S.G., Nam J.H., Kim C.-J., Lattice Boltzmann simulation of liquid water transport in microporous and gas diffusion layers of polymer electrolyte membrane fuel cells. Journal of Power Sources 278(0) (2015) 703-717.

DOI: https://doi.org/10.1016/j.jpowsour.2014.12.044

[23] Wittstadt U., Wagner E., Jungmann T., Membrane electrode assemblies for unitised regenerative polymer electrolyte fuel cells. Journal of Power Sources 145(2) (2005) 555-562.

DOI: https://doi.org/10.1016/j.jpowsour.2005.02.068

[24] Matos B.R., Isidoro R.A., Santiago E.I., Tavares A.C., Ferlauto A.S., Muccillo R., Fonseca F.C., Nafion-titanate nanotubes composites prepared by in situ crystallization and casting for direct ethanol fuel cells. International Journal of Hydrogen Energy 40(4) (2015) 1859-1867.

DOI: https://doi.org/10.1016/j.ijhydene.2014.11.102

[25] Cruz J.C., Baglio V., Siracusano S., Ornelas R., Arriaga L.G., Antonucci V., Aricò A.S., Nanosized Pt/IrO2 electrocatalyst prepared by modified polyol method for application as dual function oxygen electrode in unitized regenerative fuel cells. International Journal of Hydrogen Energy 37(7) (2012) 5508-5517.

DOI: https://doi.org/10.1016/j.ijhydene.2011.12.153

[26] Abdullah N., Kamarudin S.K., Titanium dioxide in fuel cell technology: An overview. Journal of Power Sources 278(0) (2015) 109-118.

DOI: https://doi.org/10.1016/j.jpowsour.2014.12.014

[27] Xiao J., Zhang W., Xiong C., Chi B., Pu J., Jian L., Oxidation of MnCu0.5Co1.5O4 spinel coated SUS430 alloy interconnect in anode and cathode atmospheres for intermediate temperature solid oxide fuel cell. International Journal of Hydrogen Energy 40(4) (2015) 1868-1876.

DOI: https://doi.org/10.1016/j.ijhydene.2014.11.124

[28] Vivanpatarakij S., Aiouache F., Assabumrungrat S., Performance of an improved combination unit of Pd-membrane methane steam reformer and intermediate temperature solid oxide fuel cell (C-Pd-ITSOFC). International Journal of Hydrogen Energy 40(4) (2015) 1894-1901.

DOI: https://doi.org/10.1016/j.ijhydene.2014.11.123

[29] Guo F., Fu G., Zhang Z., Performance of mixed-species biocathode microbial fuel cells using saline mustard tuber wastewater as self-buffered catholyte. Bioresource Technology 180(0) (2015) 137-143.

DOI: https://doi.org/10.1016/j.biortech.2014.11.113

[30] Yazdi H., Alzate-Gaviria L., Ren Z.J., Pluggable microbial fuel cell stacks for septic wastewater treatment and electricity production. Bioresource Technology 180(0) (2015) 258-263.

DOI: https://doi.org/10.1016/j.biortech.2014.12.100

[31] Jamil S.M., Othman M.H.D., Rahman M.A., Jaafar J., Ismail A.F., Li K., Recent fabrication techniques for micro-tubular solid oxide fuel cell support: A review. Journal of the European Ceramic Society 35(1) (2015) 1-22.

DOI: https://doi.org/10.1016/j.jeurceramsoc.2014.08.034

[32] Park S., Lee J.-W., Popov B.N., A review of gas diffusion layer in PEM fuel cells: Materials and designs. International Journal of Hydrogen Energy 37(7) (2012) 5850-5865.

DOI: https://doi.org/10.1016/j.ijhydene.2011.12.148

[33] Flick S., Dhanushkodi S.R., Mérida W., Transport phenomena in polymer electrolyte membrane fuel cells via voltage loss breakdown. Journal of Power Sources 280(0) (2015) 97-106.

DOI: https://doi.org/10.1016/j.jpowsour.2015.01.099

[34] Gabbasa M., Sopian K., Fudholi A., Asim N., A review of unitized regenerative fuel cell stack: Material, design and research achievements. International Journal of Hydrogen Energy 39(31) (2014) 17765-17778.

DOI: https://doi.org/10.1016/j.ijhydene.2014.08.121

[35] Cruz J.C., Rivas S., Beltran D., Meas Y., Ornelas R., Osorio-Monreal G., Ortiz-Frade L., Ledesma-García J., Arriaga L.G., Synthesis and evaluation of ATO as a support for Pt-IrO2 in a unitized regenerative fuel cell. International Journal of Hydrogen Energy 37(18) (2012) 13522-13528.

DOI: https://doi.org/10.1016/j.ijhydene.2012.06.095

[36] Zhou N., Yang C., Tucker D., Pezzini P., Traverso A., Transfer function development for control of cathode airflow transients in fuel cell gas turbine hybrid systems. International Journal of Hydrogen Energy 40(4) (2015) 1967-1979.

DOI: https://doi.org/10.1016/j.ijhydene.2014.11.107

[37] Doddathimmaiah A., Andrews J., Theory, modelling and performance measurement of unitised regenerative fuel cells. International Journal of Hydrogen Energy 34(19) (2009) 8157-8170.

DOI: https://doi.org/10.1016/j.ijhydene.2009.07.116

[38] Dihrab S.S., Sopian K., Alghoul M.A., Sulaiman M.Y., Review of the membrane and bipolar plates materials for conventional and unitized regenerative fuel cells. Renewable and Sustainable Energy Reviews 13(6-7) (2009) 1663-1668. ( Received 28 January 2015; accepted 09 February 2015 ).

DOI: https://doi.org/10.1016/j.rser.2008.09.029
Show More Hide
Cited By:
This article has no citations.