This work is licensed under a
Creative Commons Attribution 4.0 International License
K. Lavelle, Handbook of water and wastewater treatment technology, Applied Catalysis B: Environmental, vol. 6, pp. N8-N9, (1995).
T. Robinson, B. Chandran, and P. Nigam, Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw, Water research, vol. 36, pp.2824-2830, (2002).
D. Mohan, K. P. Singh, G. Singh, and K. Kumar, Removal of dyes from wastewater using flyash, a low-cost adsorbent, Industrial & engineering chemistry research, vol. 41, pp.3688-3695, (2002).
C. Y. Shiau and C. C. Pan, Adsorption of basic dyes from aqueous solution by various adsorbents, Separation science and technology, vol. 39, pp.1733-1750, (2005).
G. Crini, Non-conventional low-cost adsorbents for dye removal: a review, Bioresource technology, vol. 97, pp.1061-1085, (2006).
L. Wang, J. Zhang, and A. Wang, Removal of methylene blue from aqueous solution using chitosan-< i> g</i>-poly (acrylic acid)/montmorillonite superadsorbent nanocomposite, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 322, pp.47-53, (2008).
C. Namasivayam and D. Kavitha, Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste, Dyes and pigments, vol. 54, pp.47-58, (2002).
J. S. Mattson and H. B. Mark, Activated carbon: surface chemistry and adsorption from solution: M. Dekker New York, (1971).
S. Babel and T. A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: a review, Journal of hazardous materials, vol. 97, pp.219-243, (2003).
V. Gupta, Application of low-cost adsorbents for dye removal-A review, Journal of environmental management, vol. 90, pp.2313-2342, (2009).
V. Gupta, I. Ali, and D. Mohan, Equilibrium uptake and sorption dynamics for the removal of a basic dye (basic red) using low-cost adsorbents, Journal of Colloid and Interface Science, vol. 265, pp.257-264, (2003).
K. Foo and B. Hameed, Textural porosity, surface chemistry and adsorptive properties of durian shell derived activated carbon prepared by microwave assisted NaOH activation, Chemical Engineering Journal, vol. 187, pp.53-62, (2012).
K. Foo and B. Hameed, Microwave-assisted preparation and adsorption performance of activated carbon from biodiesel industry solid reside: influence of operational parameters, Bioresource technology, vol. 103, pp.398-404, (2012).
J. Guo and A. C. Lua, Preparation of activated carbons from oil-palm-stone chars by microwave-induced carbon dioxide activation, Carbon, vol. 38, pp.1985-1993, (2000).
T. Wigmans, Industrial aspects of production and use of activated carbons, Carbon, vol. 27, pp.13-22, (1989).
W. Li, L. -b. Zhang, J. -h. Peng, N. Li, and X. -y. Zhu, Preparation of high surface area activated carbons from tobacco stems with K< sub> 2</sub> CO< sub> 3</sub> activation using microwave radiation, Industrial crops and products, vol. 27, p.341347, (2008).
S. Sircar, T. Golden, and M. Rao, Activated carbon for gas separation and storage, Carbon, vol. 34, pp.1-12, (1996).
K. Yang, J. Peng, C. Srinivasakannan, L. Zhang, H. Xia, and X. Duan, Preparation of high surface area activated carbon from coconut shells using microwave heating, Bioresource technology, vol. 101, pp.6163-6169.
[1] H. Albroomi, M. Elsayed, A. Baraka, M. Abdelmaged, "Batch and fixed-bed adsorption of tartrazine azo-dye onto activated carbon prepared from apricot stones", Applied Water Science, Vol. 7, p. 2063, 2017
DOI: https://doi.org/10.1007/s13201-016-0387-2[2] . Awitdrus, A. Annur, R. Farma, . Iwantono, M. Deraman, "Effect of microwave irradiation time on the physical properties of Terminalia catappa fruit shells-based activated carbon", Vol. 1801, p. 040002, 2017
DOI: https://doi.org/10.1063/1.4973091[3] R. Wahi, N. Zuhaidi, Y. Yusof, J. Jamel, D. Kanakaraju, Z. Ngaini, "Chemically treated microwave-derived biochar: An overview", Biomass and Bioenergy, Vol. 107, p. 411, 2017
DOI: https://doi.org/10.1016/j.biombioe.2017.08.007[4] K. Wang, J. Fu, S. Wang, M. Gao, J. Zhu, Z. Wang, Q. Xu, "Polydopamine-coated magnetic nanochains as efficient dye adsorbent with good recyclability and magnetic separability", Journal of Colloid and Interface Science, Vol. 516, p. 263, 2018
DOI: https://doi.org/10.1016/j.jcis.2018.01.067[5] . Ukanwa, . Patchigolla, . Sakrabani, . Anthony, . Mandavgane, "A Review of Chemicals to Produce Activated Carbon from Agricultural Waste Biomass", Sustainability, Vol. 11, p. 6204, 2019
DOI: https://doi.org/10.3390/su11226204[6] S. Lyubchyk, O. Shapovalova, O. Lygina, M. Oliveira, N. Appazov, A. Lyubchyk, A. Charmier, S. Lyubchik, A. Pombeiro, "Integrated Green Chemical Approach to the Medicinal Plant Carpobrotus edulis Processing", Scientific Reports, Vol. 9, 2019
DOI: https://doi.org/10.1038/s41598-019-53817-8[7] A. Medhat, H. El-Maghrabi, A. Abdelghany, N. Abdel Menem, P. Raynaud, Y. Moustafa, M. Elsayed, A. Nada, "Efficiently activated carbons from corn cob for methylene blue adsorption", Applied Surface Science Advances, Vol. 3, p. 100037, 2021
DOI: https://doi.org/10.1016/j.apsadv.2020.100037[8] A. Ahmad, M. Al-Raggad, N. Shareef, "Production of activated carbon derived from agricultural by-products via microwave-induced chemical activation: a review", Carbon Letters, 2021
DOI: https://doi.org/10.1007/s42823-020-00208-z