Paper Titles in Periodical
International Letters of Chemistry, Physics and Astronomy
ILCPA Volume 47

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > ILCPA Volume 47 > Thermo-Acoustical Study of Biologically Active...
< Back to Volume

Thermo-Acoustical Study of Biologically Active 1,1’-Bis(3-Methyl-4-Carboxyethylphenoxy) Cyclohexane at Four Different Temperatures

Full Text PDF


Density (ρ), viscosity (η), ultrasonic speed (U), and thermo-acoustical parameters such as specific acoustical impedance (Z), adiabatic compressibility (κa), internal pressure (π), free volume (Vf), inter molecular free path length (Lf), Van der Waals constant (b), viscous relaxation time (τ), classical absorption coefficient (α/f2)cl, Rao’s molar sound function (Rm), solvation number (Sn), Gibbs free energy of activation (ΔG*), enthalpy of activation (ΔH*) and entropy of activation (ΔS*) of biologically active 1,1’-bis (3-methyl-4-carboxyethylphenoxy) cyclohexane (BMCPC) in 1,4-dioxane (DO), ethyl acetate (EA), tetrahydrofuran (THF) have been studied at four different temperatures: 298, 303, 308 and 313 K to understand the molecular interactions in the solutions. A good to excellent correlation between a given parameter and concentration is observed at all temperatures and solvent systems studied. Linear increase or decrease [except (α/f2)cl ] of acoustical parameters with concentration and temperature indicated the existence of strong molecular interactions. ΔG* decreased linearly with increasing concentration and temperature in DO and EA systems and increased with temperature in THF system. ΔH* and ΔS* are found practically concentration independent in case of DO and EA system but both are found concentration dependent in THF system.


International Letters of Chemistry, Physics and Astronomy (Volume 47)
B. B. Dhaduk and P. H. Parsania, "Thermo-Acoustical Study of Biologically Active 1,1’-Bis(3-Methyl-4-Carboxyethylphenoxy) Cyclohexane at Four Different Temperatures", International Letters of Chemistry, Physics and Astronomy, Vol. 47, pp. 1-14, 2015
Online since:
February 2015

T. J. Mason, Sonochemistry: The uses of ultrasound in chemistry. Royal Soc. of Chem., (1990).

T. N. Pashovkin, D. G. Sadikova, M. S. Pashovkin, G. V. Shilnikov, Bull. Exp. Bio Med. 144 (2007) 118-122.

B. A. Scheven, R. M. Shelton, P. R. Cooper, A. D. Walmsley, A. J. Smith, Med. Hypotheses. 73 (2009) 591-593.

A. Carovac, F. Smajlovic, D. Junuzovic, Acta. Inform. Med. 19 (2011), 168-171.

Price,G. J., Current Trends in Sonochemistry, Royal Society of Chemistry, Cambridge, (1992).

M. Mexiarova, M. Kiripolsky, S. Toma, Ultra. Sonochem. 12 (2005) 401-403.

C. E. Sherlock, T. S. Mari, T. F. Braake, Vet. Radio Ultrasound, 50 (2009) 13-20.

S. J. Askar Ali, J. Chem. Pharm. Res. 4 (2012) 617-632.

S. Baluja, F. Karia, J. Chem. Bio. Phys. Sci. Sec. A. 2 (2012) 101-107.

S. Nishikawa, J. Phys. Chem. B. 117 (2013) 896-900.

B. D. Bhuva, P.H. Parsania, J. Sol. Chem. 40 (2011) 719-726.

U. G. Pathak, J. V. Patel, P. H. Parsania, J. Sol. Chem. 41 (2012) 755-765.

M. Levina, M. H. Rubinstein, J. Pharm. Sci. 89 (2000) 705-723.

M. Enriquez-Sarano, V. T. Nkomo, H. Michelena, Card. Surg. Adult. 3 (2008) 315-348.

K. Jerie, A. Baranowski, J. Przybylski, J. Gliński, Phys. Lett. A. 323(2004) 148-153.

B. R. Shinde, K. M. Jadhav, J. Eng. Res. Stud. 1 (2010) 128-137.

B. B. Dhaduk, C. B. Patel, P.H. Parsania, Lett. Drug. Des. Discov. 12 (2015), 152-157.

A. I. Vogel, A. R. Tatchell, B. S. Furnis, A. J. Hannaford, P. W.G. Smith, Vogel's Textbook of Practical Organic Chemistry, 5th edn., Addison Wesley Longman, London 395 (1998).

M. Habibullah, I. M. Rahman, M. A. Uddin, M. Anowar, M. Alam, K. Iwakabe, H. Hasegawa, J. Chem. Eng. Data 58 (2013) 2887-2897.

R. A. Clará, A. C. Ǵmez Marigliano, D. Morales, H. N. Sólimo, J. Chem. Eng. Data 55 (2010) 5862-5867.

M. N. Sovilj, J. Chem. Eng. Data 40 (1995) 1058-1061.

U. B. Kadam, A. P. Hiray, A. B. Sawant, M. Hasan, J. Chem. Eng. Data 51 (2006) 6063.

G. Savaroǧlu, E. Aral, J. Mol. Liq. 105 (2003) 79-92.

H. Djojoputro, S. Ismadji, J. Chem. Eng. Data 50 (2005) 727-731.

P. S. Nikam, T. R. Mahale, M. Hasan, J. Chem. Eng. Data 41 (1996) 1055-1058.

J. Resa, C. Gonzalez, J. Goenaga, M. Iglesias, Phys. Chem. Liq. 43 (2005) 65-89.

A. Mariano, A. Camacho, M. Postigo, A. Valen, H. Artigas, F. Royo, J. Urieta, J. Chem. Eng. 17 (2000) 459-470.

M. T. Zafarani-Moattar, R. Majdan-Cegincara, J. Chem. Eng. Data 52 (2007), 23592364.

M. Gupta, I. Vibhu, J. Shukla, Fluid Phase Equilibr. 244 (2006) 26-32.

C. V. Suryanarayana, J. J. Kuppuswamy, J. Acoust. Soc. India 4 (1976) 75-82.

B. Jacobson, W. A. Anderson, J. T. Arnold, Nature 173 (1954) 772-773.

P, Vigoureux, Ultrasonic, Chapman and Hall, London, 112 (1952).

C.V. Suryanarayana, J. Acoust. Soc. India 5 (1977) 11-26.

S. Bagchi, S.K. Nema, R.P. Singh, Eur. Polym. J. 22 (1989) 851-860. ( Received 31 December 2014; accepted 12 January 2015 ).

Show More Hide
Cited By:

[1] B. Dhaduk, C. Patel, P. Parsania, "Ultrasonic Speed and Related Thermo-acoustical Parameters of Solutions of 1,1′-Bis(3-methyl-4-ethoxyacetylphenoxy)cyclohexane at Four Different Temperatures", Journal of Solution Chemistry, Vol. 44, p. 1976, 2015


[2] B. Dhaduk, C. Patel, P. Parsania, "Molecular Interactions in 1,4-Dioxane, Tetrahydrofuran, and Ethyl Acetate Solutions of 1,1′-Bis(4-isopropyloxyacetylphenoxy)cyclohexane on Reological, Density, and Acoustic Behavior", Russian Journal of Physical Chemistry A, Vol. 91, p. 2495, 2017