Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 46 > TiO2 Nanorods Prepared from Anodic Aluminum Oxide...
< Back to Volume

TiO2 Nanorods Prepared from Anodic Aluminum Oxide Template and their Applications in Dye-Sensitized Solar Cells

Full Text PDF


Anodic aluminum oxide (AAO) was used as a template coupled with liquid process for synthesis of TiO2 nanorods. Immersion setting (IS) was carried out to insert a TiO2 precursor solution into AAO pore. With the calcination and NaOH treatment to remove AAO, SEM characterization revealed that TiO2 nanorods with diameter around 100-200 nm were successfully fabricated from AAO commercial templates. The synthesized nanorods mixed with commercial TiO2 nanoparticles (P-25) with a mixing ratio of 5:95 (by mass) were used as an electrode in a dye-sensitized solar cell (DSSC), The photoelectrodes made with nanorods showed a better performance than the cells used of only pristine TiO2 nanoparticles. The results from current density-voltage (J-V) characteristics of DSSCs showed that short-circuit current density (JSC), open-circuit voltage (VOC), fill factor (FF), and power conversion efficiency (PCE) are 11.78 mA/cm2, 0.72 V, 0.55, and 4.68%, respectively. Due to the effects of one-dimensional (1-D) nanostructure, the electron expressway concept was achieved in this research.


International Letters of Chemistry, Physics and Astronomy (Volume 46)
M. Nukunudompanich et al., "TiO2 Nanorods Prepared from Anodic Aluminum Oxide Template and their Applications in Dye-Sensitized Solar Cells", International Letters of Chemistry, Physics and Astronomy, Vol. 46, pp. 30-36, 2015
Online since:
Jan 2015

A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin, M. Grätzel, Science 334 (2011) 629-634.

E. Stathatos, J. Eng. Sci. Tech. Rev. 5 (2012) 9-13.

D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. M. Zakeeruddin, and M. Grätzel ACS Nano 2 (2008) 1113-1116.

K. Asagoe, S. Ngamsinlapasathian, Y. Suzuki, Central Eur. J. Chem. 5 (2007) 605-619.

Y. Suzuki, S. Ngamsinlapasathian, R. Yoshida, S. Central Eur. J. Chem. 4 (2006) 476488.

Q. Hu, C. Wu, L. Cao, B. Chi, J. Pu, L. Jian J. Power Sources 226 (2013) 8-15.

X. Chen and S. S. Mao, Chem. Rev. 107 (2007) 2891-2959.

Y. Li, D. Xu, Q. Zhang, D. Chen, F. Huang, Y. Xu, G. Guo and Z. Gu, Chem. Mater. 11 (1999) 3433-3435.

S. Shingubara J. Nanoparticle Res. 5 (2003) 17-30.

K. Aisu, T. S. Suzuki, E. Nakamura, H. Abe, Y. Suzuki, J. Ceram. Soc. Jpn. 121 (2013) 915-918.

Y. Lei, W. Cai, G. Wilde, Prog. Mater. Sci. 52 (2007) 465-539.

S.H. Lee C.S. Jeon and Y. C Park Chem. Mater. 16 (2004) 4292-4295.

S. Chuangchote, T. Sagawa, S. Yoshikawa, Appl. Phys. Lett. 93 (2008) 033310. ( Received 30 December 2014; accepted 16 January 2015 ).

Show More Hide