Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 46 > TiO2 Nanorods Prepared from Anodic Aluminum Oxide...
< Back to Volume

TiO2 Nanorods Prepared from Anodic Aluminum Oxide Template and their Applications in Dye-Sensitized Solar Cells

Full Text PDF

Abstract:

Anodic aluminum oxide (AAO) was used as a template coupled with liquid process for synthesis of TiO2 nanorods. Immersion setting (IS) was carried out to insert a TiO2 precursor solution into AAO pore. With the calcination and NaOH treatment to remove AAO, SEM characterization revealed that TiO2 nanorods with diameter around 100-200 nm were successfully fabricated from AAO commercial templates. The synthesized nanorods mixed with commercial TiO2 nanoparticles (P-25) with a mixing ratio of 5:95 (by mass) were used as an electrode in a dye-sensitized solar cell (DSSC), The photoelectrodes made with nanorods showed a better performance than the cells used of only pristine TiO2 nanoparticles. The results from current density-voltage (J-V) characteristics of DSSCs showed that short-circuit current density (JSC), open-circuit voltage (VOC), fill factor (FF), and power conversion efficiency (PCE) are 11.78 mA/cm2, 0.72 V, 0.55, and 4.68%, respectively. Due to the effects of one-dimensional (1-D) nanostructure, the electron expressway concept was achieved in this research.

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 46)
Pages:
30-36
Citation:
M. Nukunudompanich et al., "TiO2 Nanorods Prepared from Anodic Aluminum Oxide Template and their Applications in Dye-Sensitized Solar Cells", International Letters of Chemistry, Physics and Astronomy, Vol. 46, pp. 30-36, 2015
Online since:
January 2015
Export:
Distribution:
References:

A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin, M. Grätzel, Science 334 (2011) 629-634.

E. Stathatos, J. Eng. Sci. Tech. Rev. 5 (2012) 9-13.

D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. M. Zakeeruddin, and M. Grätzel ACS Nano 2 (2008) 1113-1116.

K. Asagoe, S. Ngamsinlapasathian, Y. Suzuki, Central Eur. J. Chem. 5 (2007) 605-619.

Y. Suzuki, S. Ngamsinlapasathian, R. Yoshida, S. Central Eur. J. Chem. 4 (2006) 476488.

Q. Hu, C. Wu, L. Cao, B. Chi, J. Pu, L. Jian J. Power Sources 226 (2013) 8-15.

X. Chen and S. S. Mao, Chem. Rev. 107 (2007) 2891-2959.

Y. Li, D. Xu, Q. Zhang, D. Chen, F. Huang, Y. Xu, G. Guo and Z. Gu, Chem. Mater. 11 (1999) 3433-3435.

S. Shingubara J. Nanoparticle Res. 5 (2003) 17-30.

K. Aisu, T. S. Suzuki, E. Nakamura, H. Abe, Y. Suzuki, J. Ceram. Soc. Jpn. 121 (2013) 915-918.

Y. Lei, W. Cai, G. Wilde, Prog. Mater. Sci. 52 (2007) 465-539.

S.H. Lee C.S. Jeon and Y. C Park Chem. Mater. 16 (2004) 4292-4295.

S. Chuangchote, T. Sagawa, S. Yoshikawa, Appl. Phys. Lett. 93 (2008) 033310. ( Received 30 December 2014; accepted 16 January 2015 ).

Show More Hide
Cited By:
This article has no citations.