Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 45 > Optical Characterization of NiO Doped Fe2O3
< Back to Volume

Optical Characterization of NiO Doped Fe2O3

Full Text PDF

Abstract:

In this paper, the Fe2O3 thin film were prepared with various ratios doping of NiO by spray pyrolysis method on glass substrate temperature 400 °C. The initial solution was including a 0.1 M/L for both NiCl2 and FeCl3 diluted with redistilled water and a few drops of HCl. The effect of NiO-doping on optical properties were studied. UV-Visible spectrophotometer in the range of (300-900) nm used to determine absorbance spectra. The transmittance increased with increasing NiO content in NiO:Fe2O3 thin films, same behavior of extinction coefficient and skin depth. The energy gap increased from 2.45 eV before doping to 2.86 eV after 3% NiO-doping. While the reflectance, absorption coefficient, and refractive index are decreased with increasing NiO content in Fe2O3 thin films.

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 45)
Pages:
50-58
Citation:
S. S. Chiad "Optical Characterization of NiO Doped Fe2O3", International Letters of Chemistry, Physics and Astronomy, Vol. 45, pp. 50-58, 2015
Online since:
Jan 2015
Export:
Distribution:
References:

R. M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, second ed. Wiley-VCH, Weinheim, (2003).

J. H. Park, S. Kim and A. J. Bard, Nano Lett., 6 (2006) 24.

M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpo and J. M. Thomas, Catal. Today, 122 (2007) 51.

K. G. Mor, H. E. Prakasam, O. K. Varghese, K. Shankar and C. A. Grimes, Nano Lett., 7 (2007) 2356.

K. L. Hardee, A. J. Bard, Semiconductor electrodes. 10. Photoelectrochemical behavior of several polycrystalline metal-oxide electrodes in aqueous solutions, J. Electrochem. Soc., 124 (1977) 215.

K. L. Hardee, A. J. Bard, Semiconductor electrodes . 5. Application of chemically vapor deposited iron-oxide films to photosensitized electrolytisis, J. Electrochem. Soc., 123 (1976) 1024.

M. Ando, K. Kandono, M. Haruta, T. Sakaguchi, M. Miya, Nature, 374 (2002) 625.

Liang Y., Enache C. S., Krol R. Photoelectrochemical characterization of sprayed αFe2O3 thin films: influence of Si doping and SnO2 interfacial layer. International J Photoenergy, (2008) ID 739864.

S. S. Shinde, R. A. Bansode, C. H. Bhosale, and K. Y. Rajpure, Physical properties of hematite α- Fe2O3 thin films: application to photoelectrochemical solar cells, Journal of Semiconductors, 32 (2011) 89.

L. Dghoughi, B. Elidrissi, C. Bernede, M. Addou, M. A. Lamrani, M. Regragui, H. Erguig. Applied Surface Science., 253 (2006) 1823.

Jorge Garcia-Macedo, Guadalupe Valverde-Aguilar, Raúl W. Gómez, José L. PérezMazariego, and Vivianne Marquina, Optical Properties of Nanostructured Sol-Gel Thin Films Doped with Fe2O3 and Their Ferromagnetic Characterization by Mössbauer Spectroscopy, Journal of Nanoscience and Nanotechnology, 8 (2008).

Z. Wang, X. Hu, P. Kall, U. Helmersson. Chem. Mater., 13 (2001) (1976).

Flavio L. Souza, Kirian P. Lopes, Pedro A.P. Nascente, Edson R. Leite, Nanostructured hematite thin films produced by spin-coating deposition solution: Application in water splitting, Solar Energy Materials & Solar Cells, 93 (2009) 362.

T. Maruyama, T. Kanagawa. J. Electrochem. Soc., 143 (1996) 1675.

S. Soeya, J. Hayakawa, H. Takahashi, K. Ito, C. Yamamoto, A. Kida, H. Asano, M. Matsui. Appl. Phys. Lett., 80 (2002) 823.

J. A. Glasscock, P. R. F. Barnes, I. C. Plumb, N. Savvides, Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si, J. Phys. Chem. C, 111 (2007) 16477.

M. Ziese, H.J. Blythe. J. Phys.: Condens. Matter., 12 (2000) 13.

R. R. Willey, Field Guide to Optical Thin Films, SPIE Press, Bellingham, Washington USA, (1936).

S. D. Chavhan, S. V. Bagul, R. R. Ahire, N. G. Deshpande, A. A. Sagade, Y. G. Gudage, Ramphal Sharma, J. of Alloys and Compounds, 436 (2007) 400-406.

J. I. Pankove, Optical Processes in Semiconductors, Prentice-Hall Inc., Englewoord Cliffs, NJ, (1971).

E. Guneri, A. Kariper J. of Alloys and Compounds 516 (2012) 20-26.

A. A. Akl, Appl. Surf. Sci., 256 (2010) 7496.

N. A. Subrahamanyam: A Text Book of Optics, Ninth ed., BRJ Laboratoray Delhi, India (1977).

J. F. Eloy, Power Lasers, National School of Physics, Grenoble, France, John Wiley & Sons, (1984) 59. ( Received 23 December 2014; accepted 31 December 2014 ).

Show More Hide