Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 44 > Pre and Post Effect of Swift Heavy Ion Irradiation...
< Back to Volume

Pre and Post Effect of Swift Heavy Ion Irradiation on Infrared Spectral Evolution of Y3+xFe5-xO12 (x = 0.0 - 1.0) System

Full Text PDF

Abstract:

Present work aims to investigate the effect of Y3+ - substitution and 50 MeV, Li3+ ion irradiation (fluence: 5 x 1013 ions/cm2) on infrared spectral evolution of Y3+xFe5-xO12 (x = 0.0, 0.2 0.4, 0.6, 0.8 and 1.0) garnet system. Infrared absorption spectra for x = 0.0 – 0.6 compositions show three absorption bands while x = 0.8 – 1.0 compositions are characterized by two absorption bands, identical with IR spectra of rare earth ortho ferrites. The position and intensity of bands are found to be influenced by Y3+ - substitution. The intensity of absorption bands for x = 0.0 – 0.4 compositions is found to increase, while for x = 0.6 – 1.0 compositions no effect of swift heavy ion irradiation has been observed. The results have been explain in the light of SHII induced defect states, partial removal of un-wanted YFeO3 phase and change in structural parameters. It seems that YFeO3 phase is irradiation hard phase.

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 44)
Pages:
66-72
Citation:
K. B. Modi et al., "Pre and Post Effect of Swift Heavy Ion Irradiation on Infrared Spectral Evolution of Y3+xFe5-xO12 (x = 0.0 - 1.0) System", International Letters of Chemistry, Physics and Astronomy, Vol. 44, pp. 66-72, 2015
Online since:
January 2015
Export:
Distribution:
References:

Singh JP, Dixit G, Srivastava RC, Negi P, Agrawal HM, Ravi Kumar, Spect. Acta A: Mol. Biomol. Spect. 107 (2013) 326-333.

Studer F, Houpart C, Groult D, Toulemonde M., Rat. Eff. Def. Solid, 110(1-2) (1989) 55-59.

Donnerberg, H, Catlow CRA., J. Phys. Condens. Matter. 5 (1993) 2947-2960.

Patel MK, Vijaykumar V, Avasthi DK, Kailas S, Pivin JC, Grover V, Mandal BP, Tyagi AK., Nucl. Instrum. Methods Phys. Res. B 266 (2008) 2898-2901.

Benyagoub A., NIM B 225 (2004) 88-96.

Nagabhushna H, Prashantha SC, Nagabhushna BM, Lakshminarasappa BN, Singh F., Spectra Acta A 71 (2008) 1070-1073.

Schuster B, Lang M, Klein R, Trautmann C, Neumann R, Benyagoub A., Nucl. Instrum. Methods Phys. Res. B. 267 (2009) 964-968.

Singh F, Singh RG, Vinod Kumar, Khan SA, Pivin JC., J. Appl. Phys. 110 (2011) 083520(1-6).

Singh JP, Dixit G, Srivastava RC, Agrawal HM., Nucl. Instrum. Methods Phys. Res. B. 269 (2011) 133-139.

Tawfik A, Hamada IM, Hemeda OM., J. Magn. Magn. Mater. 250 (2002) 77-82.

Rashad Mohamed Mohamed, J. Mater. Sci. 42 (2007) 5248-5255.

Mousa MA, Summan AM, Ahmed MA, Badawy AM., J. Mater. Sci. 24 (1989) 24782482.

Singh JP, Dixit G, Srivastava RC, Agarwal HM, Ravikumar., J. Alloys Compd. 551 (2013) 370-375.

Modi KB, Sharma PU., Rad. Eff. Def. Solids 169(8) (2014) 723-739.

Chong FY, Jin Yun-Fan, J. Appl. Phys. 108 (2010) 104909 (1-6).

Sharma PU, Dolia SN, Ravi Kumar, Modi KB., Radiat. Eff. Def. Solid. 166 (2011) 648-652.

Sharma PU, Roy MK, Ravi Kumar, Verma HC, Joshi HH, Modi KB., Hyper. Inter. 187, (2011) 117-124.

Modi KB, Sharma PU, Phys. Scripta 88(2) (2013) 025702 (1-11).

Modi KB, Sharma PU., Rad. Eff. Def. Solid. 168(11-12) (2013) 967-974.

Hofmeister AM, Campbell KR., J Appl. Phys. 72 (1992) 638-646.

Hemeda OM, Barakat Mohsen Mohamed, Hemeda DM., Turk. J. Phys. 27 (2003) 537-550. ( Received 01 December 2014; accepted 14 December 2014 ).

Show More Hide