Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 42 > Annealing Temperature Effects on the Optical...
< Back to Volume

Annealing Temperature Effects on the Optical Properties of CdO Thin Films Deposited by CSP Technique

Full Text PDF

Abstract:

By chemical spray pyrolysis method. The CdO thin film prepared at constant film thickness (350 nm). The prepared films are annealed at a temperature of 450 and 500 °C. The optical properties are calculated from the measurement of UV-Visible spectrophotometer spectrum in the range of (300-900) nm at room temperature. The transmittance, absorption coefficient, extinction coefficient, refractive index, and skin depth are calculated as annealing temperature. The energy gap decreased from 2.52 eV to 2.47 eV when the annealing temperature increased from room temperature to 500 °C.

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 42)
Pages:
63-71
DOI:
10.18052/www.scipress.com/ILCPA.42.63
Citation:
S. S. Chiad "Annealing Temperature Effects on the Optical Properties of CdO Thin Films Deposited by CSP Technique", International Letters of Chemistry, Physics and Astronomy, Vol. 42, pp. 63-71, 2015
Online since:
Dec 2014
Export:
Distribution:
References:

Champness C.H., Chan C.H., Sol. Energy Mater. Sol. Cells. 37 (1995) 75.

Liu X, Xu Z, Shen Y., Proc Int. Conf Solid State Sens. Act. 1 (1997) 585-588.

A. Gulino, F. Castelli, P. Dapporto, P. Rossi, I. Fragala, Chem. Mater. 14 (2002) 704.

Lima S. A. M., F. A. Sigoli, M. R. Davolos, M. Jafericci Jr. J. Alloys Comp. 344 (2002) 280.

Ghosh M., C. N. R. Rao, Chem. Phys. Lett. 393 (2004) 493.

Dong W., C. Zhu, Optical Mater. 22 (2003) 227.

N. Benramdane, W.A. Murad, R.H. Misho, M. Ziane, Z. Kebbab, Materials Chmistry and physics 48(2) (1997) 119-123.

S. Chandramohan, A. Kanjilal, S.N. Sarangi, S. Majumder, R. Sathyamoorthy, T. Som, Appl. Phys. A99 (2010) 837-842.

H. Khallaf, I.O. Oladeji, G. Chai, Chow, Thin Solid Films 516 (2008) 7306.

G. Ichuk, V. Kusnezh, P. Shapowal, F. Tsupko, R. Petrus, S. Tokarev, O. Horbva, J. Nano-Electron. Phys. 1(2) (2009) 36.

X.L. Tong, D.S. Jiang, Z.M. Liu, M.Z. Luo, P.X. Lu, G. Yang, H. Long, Thin Solid Films 516 (2008) (2003).

S. Chandramohan, A. Kanjilal, J.K. Tripathi, S.N. Sarange, R. Sathyamoorthy, T. Som, J. Appl. Phys. 105 (2009) 123507.

M.L. Alor-aguilera, M.A. Gonzaez-TRUJLLO, A. Cruz-Orea, M. Tufino-Velazquez, Thin Solid Films 517 (2009) 2335.

A. Podesta, N. Armani, G. Salviati, N. Romeo, A. Bosio, M. Prato, Thin Solid Films 448 (2008) 511-512.

C.S. Tepantlan, A.M. Perezgonzalez, V. Arreola, Rev. Mexicana de Fisica 54(2) (2008) 112.

N. F. Mott and E. A. Davis, Electronic Processes in Non- crystalline Material, Oxford University press, Oxford, (1979).

A. Ashour, Turk J Phys 27 (2003) 551-558.

B. L. Sharma and R.K. Purohit, Semiconductor Hetrojunction, Pergomon Press, New York, (1974).

N. A. Subrahamanyam: A Text Book of Optics, Ninth ed., BRJ Laboratoray Delhi, India (1977).

Eloy J. F. (1984). Power Lasers, National School of Physics, Grenoble, France, John Wiley and Sons, 59.

T. Mahalingam, V. Dhanasekaran, Ravi G, Lee S, Chu JP, Lim H-J., J Optoelectron Adv Mater 12 (2010) 1327-1332. ( Received 10 November 2014; accepted 19 November 2014 ).

Show More Hide