Synthesis and Characterization of Some Benzylidinehydrazinyl Derivatives of Newer Pyrimidine-5-carbonitrile Moiety

Hingrajia Dhaval, Thanki Pragna, Modha Jayesh*
Department of Chemistry, Maharshi Dayanand Science College, Porbandar, Gujarat, India

*E-mail address: drjmodha@gmail.com

ABSTRACT

Condensation of 2-hydrazinyl-1,6-dihydro-1-methyl-6-oxo-4-isobutylpyrimidine-5-carbonitrile (3) with different aromatic aldehyde gave the corresponding 2-(Benzylidinehydrazinyl)-1,6-dihydro-6-oxo-4-isobutylpyrimidine-5-carbonitrile (4). The reaction between 1,6-dihydro-1-methyl-2-(methylthio)-6-oxo-4-isobutylpyrimidine-5-carbonitrile (2) with hydrazine hydrate furnished (3). The condensation of 1,2,3,4-tetrahydro-4-oxo-6-isobutyl-2-thioxopyrimidine-5-carbonitrile (1) with methyl iodide yielded 2. Finally the products were characterized by 1H NMR, Mass and IR Spectra.

Keyword: Cyanopyrimidine; Benzylidinehydrazinyl; Isovaleraldehyde

1. INTRODUCTION

Schiff bases are an important class of organic compounds. They were first prepared by German chemist Hugo Schiff [1]. These compounds are prepared by condensation of primary amine with compound containing an active carbonyl group & elimination of water molecule. The structural feature of these compounds are the azomethine group having the general formula RHC=N-R$_1$, where R and R$_1$ are alkyl, aryl, cycloalkyl, or heterocyclic groups. They are known to exhibit a broad range of biological activities including antifungal, antibacterial, antimalarial, anti-inflammatory, antiviral, and antipyretic properties [2,3]. Imine or azomethine group present in various natural and synthetic compounds has been found to be critical to their biological activities [4-6]. Schiff's bases are important compounds also owing to their wide range of industrial applications [7]. They are well known intermediates for synthesis of pharmacologically active heterocycles like oxadiazolines, imidazolinones, azetidinones, thiazolidinones [8] and many other derivatives.

1,2,3,4-tetrahydropyrimidine-5-carbonitrile scaffold [9] have demonstrated biological activities like Calcium channel antagonist [10], Cardiovascular [11], Anti-inflammatory [12], Antimicrobial [13-15], and Immunomodulatory [16].

Schiff base associated with Pyrimidine-5-carbonitrile have also been reported to exhibit a wide range of biological activities like Antitubercular, Anticonvulsant, Neurotoxicity [17], Antitumor [18] and Antibacterial [19].

Going through the references and in search of newer pharmacologically active pyrimidine-5-carbonitrile derivatives, we have synthesized some new 2-(Benzylidinehydrazinyl)-1,6-dihydro-6-oxo-4-isobutylpyrimidine-5-carbonitrile by condensation of 2-hydrazinyl-1,6-dihydro-1-methyl-6-oxo-4-isobutylpyrimidine-5-
carbonitrile with different aromatic aldehydes using 3-component heterocyclization method [20].

2. EXPERIMENTAL

Melting points were taken in open capillary and are not corrected. Purity of synthesized compounds have been checked by TLC.

\[\text{H NMR (δ ppm)} (400 MHz, DMSO) \]

\[\delta 0.9 (d, 6H, CH_3), \delta 2.0 (m, 1H, CH), \delta 2.4 (d, 2H, CH_2), \delta 13 (s, 2H, NH). \]

2.1 Synthesis of 1,2,3,4-tetrahydro-6-isobutyl-4-oxo-2-thioxopyrimidine-5-carbonitrile (1)

A mixture of Thiourea (0.05 mol), ethylcyanoacetate (0.05 mol), isovaleraldehyde (0.05 mol) and potassium carbonate (0.05 mol) in absolute alcohol (100 ml) was refluxed for 4 hours. Reaction mixture was poured into minimum quantity of crushed ice and neutralized with acetic acid. The product obtained was isolated and crystallized from water. Mass \(M^+ = 209 \): IR (KBr) ν (cm\(^{-1}\)), 2965 (-CH\(_3\), Asym.), 2877 (-CH\(_3\), Sym.), 2235 (-CN), 1648 (-CO); 1H NMR (δ ppm) (400 MHz, DMSO), δ 0.9 (d, 6H, CH\(_3\)), δ 2.0 (m, 1H, CH), δ 2.4 (d, 2H, CH\(_2\)), δ 13 (s, 2H, NH).
2. 2. Synthesis of 1,6-dihydro-4-isobutyl-1-methyl-2-(methylthio)-6-oxopyrimidine-5-carbonitrile (2)

To a solution of (1) (0.05 mol) in DMF (70 ml), potassium carbonate (0.1 mol) and methyl iodide (0.1 mol) were added and the mixture was stirred for 3 hours. The contents were poured into water, filtered, washed with water and crystallized from DMF. Mass M\(^+\) = 237: IR (KBr) \(\nu\) (cm\(^{-1}\)) 2956 (-CH\(_3\), Asym.), 2869 (-CH\(_3\), Sym.), 2220 (-CN), 1673 (-CO), 663 (C-S-C); 1H NMR (\(\delta\) ppm) (400 MHz, DMSO), \(\delta\) 0.9 (d, 6H, CH\(_3\)\(_\)CH\(_3\)), \(\delta\) 2.1 (m, 1H, CH), \(\delta\) 2.5 (d, 2H, CH\(_2\)), \(\delta\) 2.6 (s, 3H, S-CH\(_3\)), \(\delta\) 3.4 (s, 3H, N-CH\(_3\)).

2. 3. Synthesis of 1,6-dihydro-4-isobutyl-1-methyl-6-oxopyrimidine-5-carbonitrile (3)

A mixture of (2) (0.01 mol) and Hydrazine hydrate (3.5 ml) in absolute alcohol (30 ml) was refluxed for 6 hours. The reaction mixture was poured into crushed ice and the solid product obtained after neutralization with acetic acid was kept in water overnight. The product was isolated and crystallized from absolute alcohol. Mass M\(^+\) = 221: IR (KBr) \(\nu\) (cm\(^{-1}\)), 3304 (-NH, secondary) 2954 (-CH\(_3\), Asym.), 2868 (-CH\(_3\), Sym.), 2220 (-CN), 1676 (-CO); 1H NMR (\(\delta\) ppm) (400 MHz, DMSO), \(\delta\) 0.9 (d, 6H, CH\(_3\)), \(\delta\) 2.2 (m, 1H, CH), \(\delta\) 2.3 (d, 2H, CH\(_2\)), \(\delta\) 3.1 (s, 3H, N-CH\(_3\)).

2. 4. Synthesis of 2-(Substituted benzylidenehydrazinyl)-1,6-dihydro-4-isobutyl-1-methyl-6-oxopyrimidine-5-carbonitrile (4a-j)

A mixture of (3) (0.01 mol) and different aromatic aldehyde (0.01 mol) in absolute alcohol (20 ml) was refluxed for 3 hours in presence of catalytic amount of acetic acid. The reaction mixture was poured into sodium bisulfite solution. The product was isolated and crystalized from appropriate solvent.

<table>
<thead>
<tr>
<th>Comp.</th>
<th>R</th>
<th>M.F.</th>
<th>MP °C</th>
<th>Yield %</th>
<th>% of C Found (Calcd.)</th>
<th>% of H Found (Calcd.)</th>
<th>% of N Found (Calcd.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>C(8)H({11})N(_3)OS</td>
<td>246</td>
<td>90</td>
<td>51.63 (51.65)</td>
<td>5.27 (5.30)</td>
<td>20.05 (20.08)</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>C({11})H({12})N(_3)OS</td>
<td>100</td>
<td>85</td>
<td>55.32 (55.37)</td>
<td>6.34 (6.37)</td>
<td>17.68 (17.71)</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>C({16})H({15})N(_2)O</td>
<td>168</td>
<td>60</td>
<td>54.25 (54.28)</td>
<td>6.79 (6.83)</td>
<td>31.61 (31.65)</td>
</tr>
<tr>
<td>4a</td>
<td>-H</td>
<td>C({17})H({19})N(_2)O</td>
<td>200</td>
<td>54</td>
<td>65.97 (66.00)</td>
<td>6.15 (6.19)</td>
<td>22.65 (22.64)</td>
</tr>
<tr>
<td>4b</td>
<td>-4-Cl</td>
<td>C({17})H({18})N(_2)OCl</td>
<td>206</td>
<td>55</td>
<td>59.36 (59.39)</td>
<td>5.23 (5.28)</td>
<td>20.35 (20.37)</td>
</tr>
<tr>
<td>4c</td>
<td>-4-OCH(_3)</td>
<td>C({18})H({21})N(_3)O (_2)</td>
<td>190</td>
<td>48</td>
<td>63.65 (63.70)</td>
<td>6.20 (6.24)</td>
<td>20.59 (20.64)</td>
</tr>
<tr>
<td>4d</td>
<td>-4-N(CH(_3))(_2)</td>
<td>C({18})H({22})N(_2)O</td>
<td>212</td>
<td>53</td>
<td>64.76 (64.75)</td>
<td>6.87 (6.86)</td>
<td>23.83 (23.85)</td>
</tr>
<tr>
<td>4e</td>
<td>-3,4(OCH(_3))(_2)</td>
<td>C({19})H({23})N(_2)O(_3)</td>
<td>186</td>
<td>56</td>
<td>61.74 (61.77)</td>
<td>6.24 (6.28)</td>
<td>18.96 (18.96)</td>
</tr>
<tr>
<td>4f</td>
<td>-3-OCH(_3)-4-</td>
<td>C({18})H({21})N(_3)O(_3)</td>
<td>206</td>
<td>49</td>
<td>60.82 (60.83)</td>
<td>5.94 (5.96)</td>
<td>19.68 (19.71)</td>
</tr>
</tbody>
</table>
3. SPECTRAL ANALYSIS OF NOVEL BENZYLIDINEHYDRAZINYL DERIVATIVES

3.1. 2-(Benzylidenehydrazinyl)-1,6-dihydro-4-isobutyl-1-methyl-6-oxopyrimidine-5-carbonitrile (4a)

Mass \(M^+ = 309 \): \(\text{IR (KBr)} v (\text{cm}^{-1}), 2966 (-\text{CH}_3, \text{Asym}.), 2872 (-\text{CH}_3, \text{Sym}.), 2222 (-\text{CN}), 1668 (-\text{CO}), 1496-1458 (\text{C=\text{C}}), 1084 (\text{N-C}); 1\text{H NMR (}\delta \text{ ppm) (400 MHz, DMSO), }\delta 1.0 (\text{d, 6H, CH}_3), \delta 2.0 (\text{m, 1H, CH}), \delta 2.7 (\text{d, 2H, CH}_2), \delta 3.2 (\text{s, 3H, N-CH}_3), \delta 7.4-8.4 (\text{m, 5H, Ar-H}), \delta 10.9 (\text{s, 1H, NH}).

3.2. 2-(4-Chloro benzylidenehydrazinyl)-1,6-dihydro-4-isobutyl-1-methyl-6-oxopyrimidine-5-carbonitrile (4b)

Mass \(M^+ = 343 \): \(\text{IR (KBr)} v (\text{cm}^{-1}), 2962 (-\text{CH}_3, \text{Asym}.), 2875 (-\text{CH}_3, \text{Sym}.), 2224 (-\text{CN}), 1661 (-\text{CO}); 1\text{H NMR (}\delta \text{ ppm) (400 MHz, DMSO), }\delta 1.1 (\text{d, 6H, CH}_3), \delta 2.1 (\text{m, 1H, CH}), \delta 2.8 (\text{d, 2H, CH}_2), \delta 3.3 (\text{s, 3H, N-CH}_3), \delta 7.4-8.4 (\text{dd, 4H, Ar-H}), \delta 10.2 (\text{s, 1H, NH}).

3.3. 2-(4-Methoxybenzylidenehydrazinyl)-1,6-dihydro-4-isobutyl-1-methyl-6-oxopyrimidine-5-carbonitrile (4c)

Mass \(M^+ = 339 \): \(\text{IR (KBr)} v (\text{cm}^{-1}), 2954 (-\text{CH}_3, \text{Asym}.), 2868 (-\text{CH}_3, \text{Sym}.), 2220 (-\text{CN}), 1676 (-\text{CO}); 1\text{H NMR (}\delta \text{ ppm) (400MHz, DMSO), }\delta 0.9 (\text{d, 6H, CH}_3), \delta 2.1 (\text{m, 1H, CH}), \delta 2.3 (\text{d, 2H, CH}_2), \delta 3.1 (\text{s, 3H, N-CH}_3), \delta 3.3 (\text{s, 3H, -OCH}_3), \delta 7.2-7.8 (\text{m, 4H, Ar-H}), \delta 9.8 (\text{s, 1H, NH}).

3.4. 2-(4-N,N-dimethyl benzylidenehydrazinyl)-1,6-dihydro-4-isobutyl-1-methyl-6-oxopyrimidine-5-carbonitrile (4d)

Mass \(M^+ = 352 \): \(\text{IR (KBr)} v (\text{cm}^{-1}), 2965 (-\text{CH}_3, \text{Asym}.), 2877 (-\text{CH}_3, \text{Sym}.), 2218 (-\text{CN}), 1675 (-\text{CO}); 1\text{H NMR (}\delta \text{ ppm) (400MHz, DMSO), }\delta 1.0 (\text{d, 6H, CH}_3), \delta 2.0 (\text{m, 1H, CH}), \delta 2.7 (\text{d, 2H, CH}_2), \delta 3.0 (\text{s, 6H, CH}_3), \delta 3.2 (\text{s, 3H, N-CH}_3), \delta 7.4-8.4 (\text{m, 5H, Ar-H}), \delta 10.4 (\text{s, 1H, NH}).

3.5. 2-(3,4-Dimethoxy benzylidenehydrazinyl)-1,6-dihydro-4-isobutyl-1-methyl-6-oxopyrimidine-5-carbonitrile (4e)

Mass \(M^+ = 369 \): \(\text{IR (KBr)} v (\text{cm}^{-1}), 2956 (-\text{CH}_3, \text{Asym}.), 2868 (-\text{CH}_3, \text{Sym}.), 2225 (-\text{CN}), 1676 (-\text{CO}); 1\text{H NMR (}\delta \text{ ppm) (400 MHz, DMSO), }\delta 0.9 (\text{d, 6H, CH}_3), \delta 2.1 (\text{m, 1H, CH}), \delta 2.3 (\text{d, 2H, CH}_2), \delta 3.1 (\text{s, 3H, N-CH}_3), \delta 3.5 (\text{s, 6H, -OCH}_3), \delta 7.2-7.8 (\text{m, 3H, Ar-H}), \delta 9.9 (\text{s, 1H, NH}).

<table>
<thead>
<tr>
<th></th>
<th>Substituent</th>
<th>Molecular Formula</th>
<th>M (amu)</th>
<th>δ (ppm)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4g</td>
<td>-4-CH₃</td>
<td>C₁⁹H₂₁N₃O</td>
<td>190</td>
<td>66.86</td>
<td>6.56</td>
<td>21.63</td>
</tr>
<tr>
<td>4h</td>
<td>-4-F</td>
<td>C₁₇H₁₉FN₃O</td>
<td>170</td>
<td>62.35</td>
<td>5.51</td>
<td>21.40</td>
</tr>
<tr>
<td>4i</td>
<td>-4-OH</td>
<td>C₁₇H₁₈N₃O₂</td>
<td>242</td>
<td>62.71</td>
<td>5.88</td>
<td>21.50</td>
</tr>
<tr>
<td>4j</td>
<td>-2-Cl</td>
<td>C₁₇H₁₈N₅Cl</td>
<td>184</td>
<td>59.38</td>
<td>5.26</td>
<td>20.32</td>
</tr>
</tbody>
</table>
3. 6. 2-(3-Methoxy-4-hydroxy benzylidenedihyrazinyl)-1,6-dihydro-4-isobutyl-1-methyl-6-oxopyrimidine-5-carbonitrile (4f)

Mass M⁺ = 355: IR (KBr) ν (cm⁻¹), 2957 (-CH₃, Asym.), 2870 (-CH₃, Sym.), 2223 (-CN), 1670 (-CO); 1H NMR (δ ppm) (400 MHz, DMSO), δ 0.9 (d, 6H, CH₃), δ 2.1 (m, 1H, CH), δ 2.3 (d, 2H, CH₂), δ 3.1 (s, 3H, N-CH₃), δ 3.5 (s, 3H, -OCH₃), δ 7.2-7.8 (m, 4H, Ar-H), δ 9.8 (s, 1H, NH), δ 10.1 (s, 1H, OH).

3. 7. 2-(4-Methyl benzylidenedihyrazinyl)-1,6-dihydro-4-isobutyl-1-methyl-6-oxopyrimidine-5-carbonitrile (4g)

Mass M⁺ = 323: IR (KBr) ν (cm⁻¹), 2972 (-CH₃, Asym.), 2860 (-CH₃, Sym.), 2227 (-CN), 1671 (-CO); 1H NMR (δ ppm) (400 MHz, DMSO), δ 1.1 (d, 6H, CH₃), δ 2.1 (m, 1H, CH), δ 2.8 (d, 2H, CH₂), δ 2.3 (s, 3H, -CH₃), δ 3.2 (s, 3H, N-CH₃), δ 7.4-8.4 (m, 4H, Ar-H), δ 10.0 (s, 1H, NH).

3. 8. 2-(4-Fluro benzylidenedihyrazinyl)-1,6-dihydro-4-isobutyl-1-methyl-6-oxopyrimidine-5-carbonitrile (4h)

Mass M⁺ = 327: IR (KBr) ν (cm⁻¹), 2972 (-CH₃, Asym.), 2860 (-CH₃, Sym.), 2227 (-CN), 1671 (-CO); 1H NMR (δ ppm) (400 MHz, DMSO), δ 1.1 (d, 6H, CH₃), δ 2.1 (m, 1H, CH), δ 2.8 (d, 2H, CH₂), δ 3.2 (s, 3H, N-CH₃), δ 7.4-8.2 (m, 4H, Ar-H), δ 10.0 (s, 1H, NH).

3. 9. 2-(4-Hydroxy benzylidenehydrazinyl)-1,6-dihydro-4-isobutyl-1-methyl-6-oxopyrimidine-5-carbonitrile (4i)

Mass M⁺ = 325: IR (KBr) ν (cm⁻¹), 2955 (-CH₃, Asym.), 2874 (-CH₃, Sym.), 2220 (-CN), 1678 (-CO); 1H NMR (δ ppm) (400MHz, DMSO), δ 0.9 (d, 6H, CH₃), δ 2.1 (m, 1H, CH), δ 2.3 (d, 2H, CH₂), δ 3.1 (s, 3H, N-CH₃), δ 7.2-7.8 (m, 4H, Ar-H), δ 9.8 (s, 1H, NH), δ 10.1 (s, 1H, OH).

3. 10. 2-(2-Chloro benzylidenehydrazinyl)-1,6-dihydro-4-isobutyl-1-methyl-6-oxopyrimidine-5-carbonitrile (4j)

Mass M⁺ = 343: IR (KBr) ν (cm⁻¹), 2963 (-CH₃, Asym.), 2876 (-CH₃, Sym.), 2225 (-CN), 1668 (-CO); 1H NMR (δ ppm) (400 MHz, DMSO), δ 1.1 (d, 6H, CH₃), δ 2.1 (m, 1H, CH), δ 2.8 (d, 2H, CH₂), δ 3.3 (s, 3H, N-CH₃), δ 7.4-8.4 (m, 4H, Ar-H), δ 10.2 (s, 1H, NH).

4. CONCLUSION

Rarely reported Benzylidinehydrazinyl derivatives of 4-alkyl pyrimidine-5-carbonitrile were prepared using 2-hydrazinyl-1,6-dihydro-1-methyl-6-oxo-4-isobutylpyrimidine-5-carbonitrile (3) with different aromatic aldehyde in presence of 1-2 ml of glacial acetic acid gave 2-(Substituted benzylidenehydrazinyl)-1,6-dihydro-4-isobutyl-1-methyl-6-oxopyrimidine-5-carbonitrile (4a-j) (Scheme 1). All synthesized compounds were obtained in good yield (Table 1). The synthesized compounds were characterized by IR, ¹H-NMR and Mass Spectroscopy and the obtained results are showing good agreement with the synthesized structure.
ACKNOWLEDGEMENT

Authors are thankful to Maharshi Dayanand Science College, Porbandar for providing research facilities. We are grateful to the NFDD center, Saurashtra University, Rajkot for recording and providing 1H NMR, Mass and IR Spectral data.

References

(Received 03 September 2014; accepted 12 September 2014)